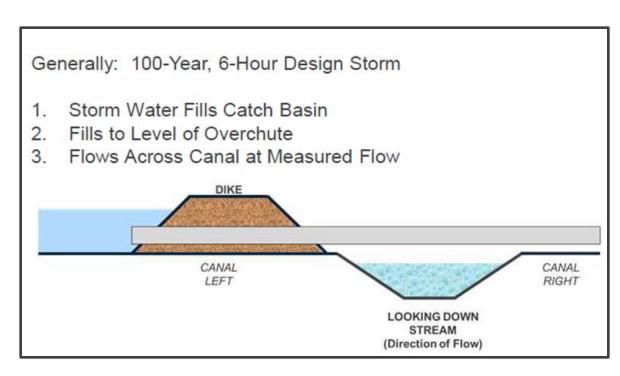




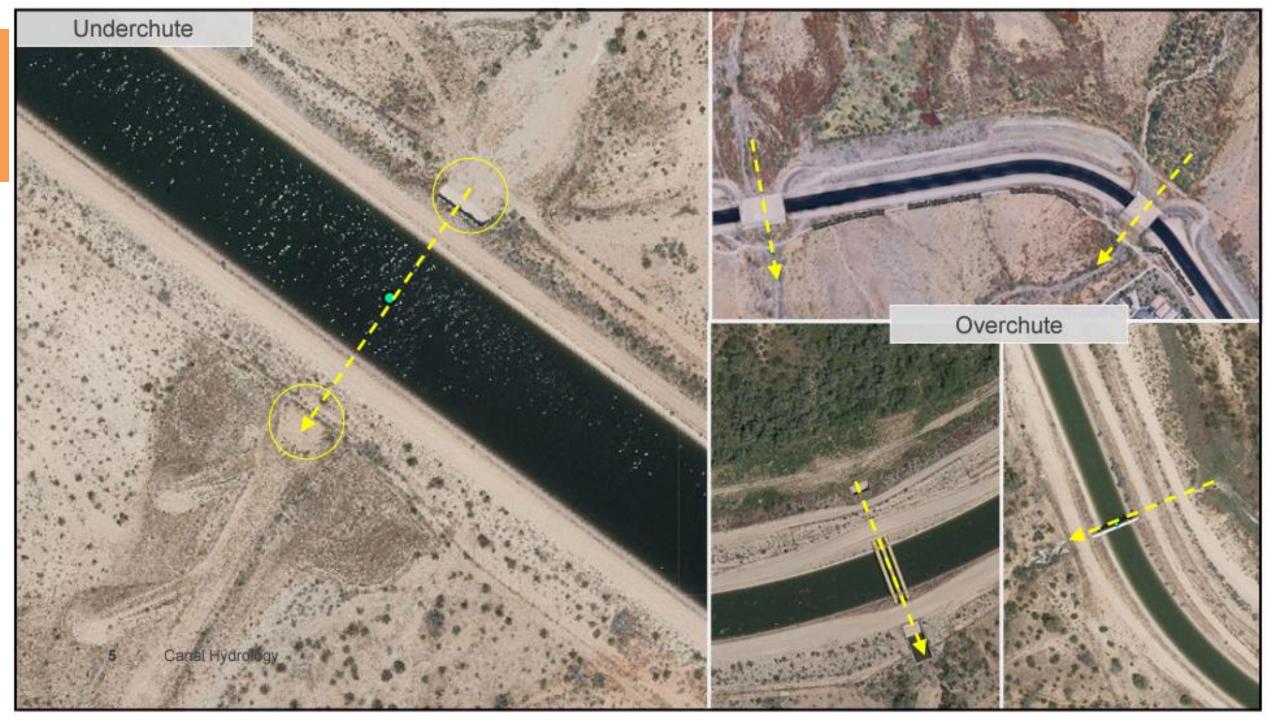
#### Case Study: Pool 34 Embankment

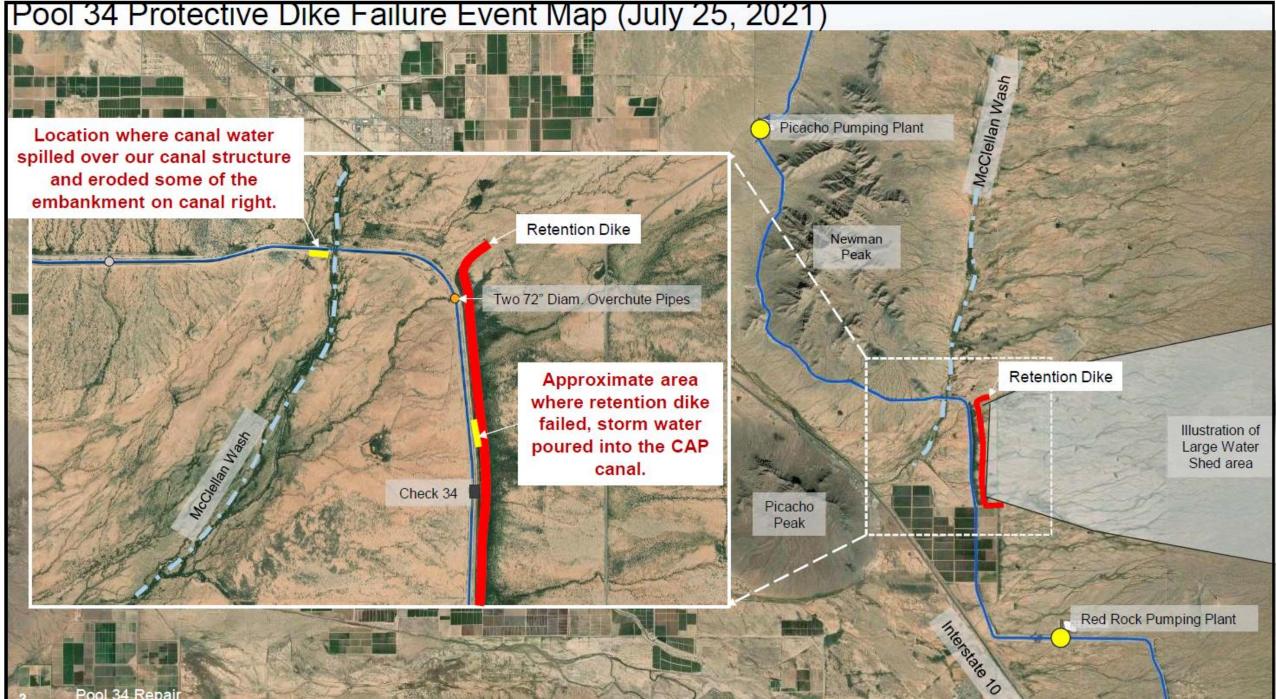
Ryan Johnson, Engineering Services Manager

# **Canal Design for Hydrology**


- CAP canal bi-sects the State's natural hydrology
- Bureau of Reclamation's general design Storm
  - 100-year, 6-hour storm (major drainage ways and dike bank height)
  - o 50-year, 6-hour storm (minor drainage ways)
- Storm water:
  - $_{\odot}$  Contained and flows over/under CAP canal







# **Canal Was Designed for Hydrology**

- CAP owns and maintains 165 miles of earthen dike:
  - Primarily utilized native soils (not zoned embankments)
  - $_{\odot}$  Contain storm and control peak flows
- Cross drainage
  - 149 overchutes canal in "cut"
  - $\circ$  102 underchutes canal in "fill"
  - $_{\odot}$  Safely convey impounded storm water













## **Pool 34 Repairs**

#### **2021 Repair Contract**

- Earthen dike and O&M Road ٠
- Remove damaged concrete liner ٠
- Clean debris from canal ٠

#### September 2021 Board Meeting

- Not to exceed \$4.5 million ٠
- \$3.4 million final cost ٠

#### **2022 Repair Contract**

- Concrete liner replacement ٠
- Over 4,100 ft •

#### August 2022 Board Meeting

- Not to exceed \$8.5 million ٠
- \$7.1 million final cost •

Final total cost: \$10.5 million (NTE \$13 million)





### **Damaged Canal Liner & Debris Removal**











# **Completed & Filling**

Pool 34 Repair

## **Pool 34 Repairs - 2022**







# **Pool 34 Repairs - 2022**





# **Pool 34 Repairs - 2022**



# **Addressing Service Area Canal Risk**

Changes in watershed or design storm & climate impact to design hydrology

- Changing upstream hydrology from development
  - $\circ$  Development containing stormwater
  - $\circ$  Hardscape less infiltration, more runoff
- Potential for more intense or extreme storm events
  - $\,\circ\,$  Picacho area: 2018 and 2021 storm events





# **Addressing Service Area Canal Risk**

Formation of Aqueduct Resiliency Committee

- Management Council sponsor: OP&E Director (Brian Buzard)
- Committee Chair: Engineering Services Manager (Ryan Johnson)
  - Maintenance Control Mnaager (Robert Hitchcock)
  - Reliability Engineering Supervisor (Brandon Vigil)
  - Civil-Mechanical Engineering Supervisor (Sami Korpelainen)
  - $_{\odot}$  Engineers across maintenance and engineering & GIS Administrators



# **Addressing Service Area Canal Risk**

#### Aqueduct Resiliency Committee Focus Areas

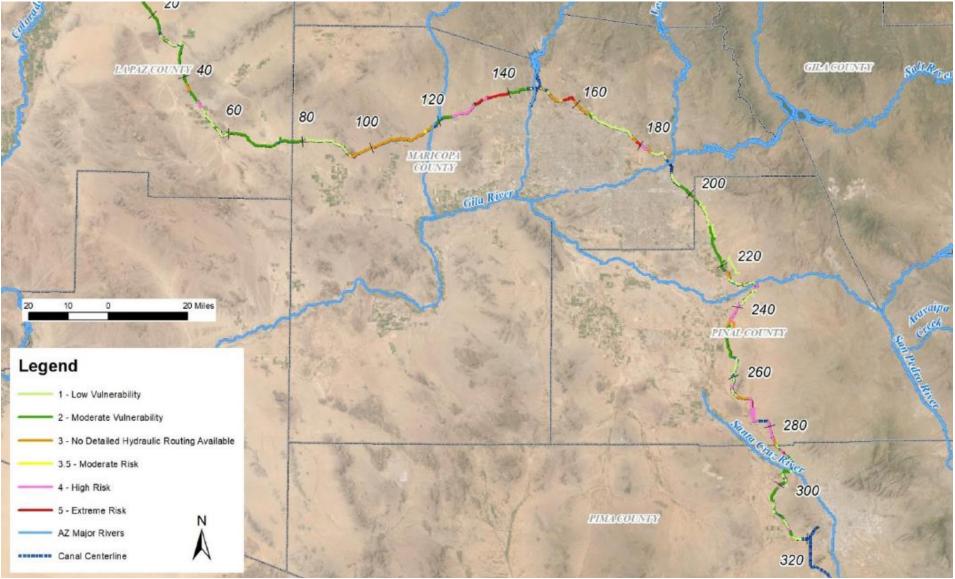
- Evaluates risk (probability x consequence)
  - $\,\circ\,$  Fill section, downstream population, hydrology
- Technical studies, analysis, and relevant data
  - External consultants industry experts
- Recommends: project execution, maintenance procedures, elevated monitoring
- Utilization of GIS for geo-referenced data visualization

FOCUS LIMITED RESOURCES ON HIGHEST PRIORITY

On-going team, address systemwide risk to canal



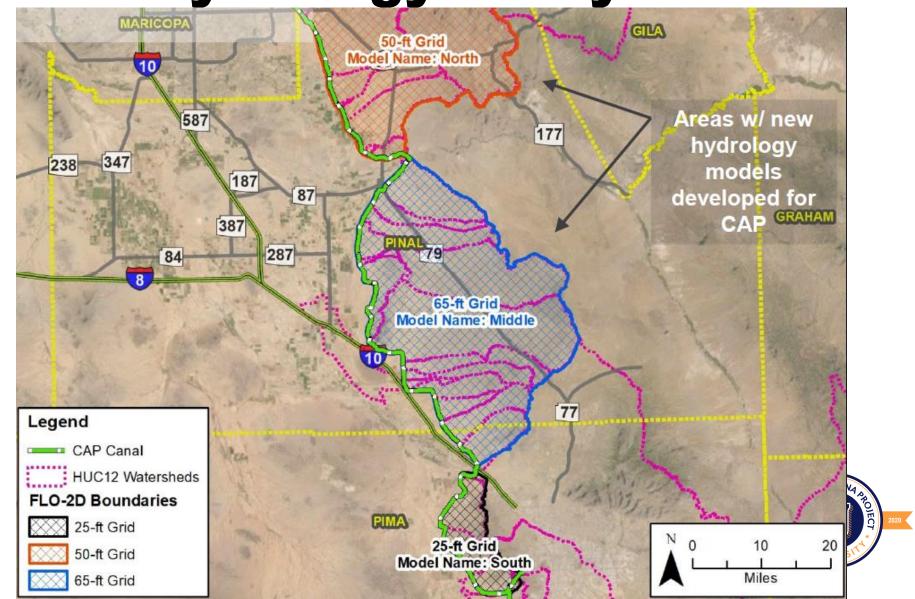
#### 2022 Committee Action Plan


- GIS Visualization
- Build off the 2010 Canal-Wide Data Collection Study
  - Execute External Hydrology Contract
  - Local & Specific Expertise
  - Focus on Identified Higher Risk Hydrology Areas / Structures
- Identify System Improvements



### **Canal-Wide Hydrology Study**

**Study Purpose** 


Identify areas vulnerable to damage from storm water runoff



## **Canal-Wide Hydrology Study**

Use new, modern hydrology models

Developed new models for much of the canal; areas without new studies by others



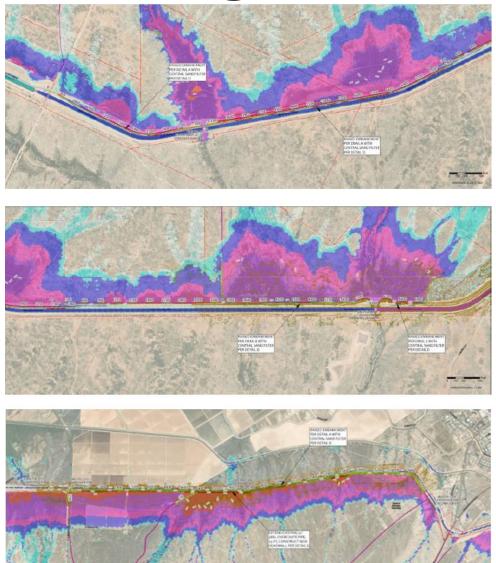
19

# **Canal-Wide Hydrology Study**

Utilize the latest rainfall statistics

| PDS-based precipitation frequency estimates with 90% confidence intervals (in inches) <sup>1</sup> |               |               |               |               |               |               |               |               |              |              |  |
|----------------------------------------------------------------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|--------------|--|
| Average recurrence interval (years)                                                                |               |               |               |               |               |               |               |               |              |              |  |
| Duration                                                                                           | 1             | 2             | 5             | 10            | 25            | 50            | 100           | 200           | 500          | 1000         |  |
| 5-min                                                                                              | 0.216         | 0.281         | 0.380         | 0.455         | 0.555         | 0.632         | 0.710         | 0.790         | 0.895        | 0.977        |  |
|                                                                                                    | (0.178-0.266) | (0.233-0.348) | (0.311-0.468) | (0.370-0.559) | (0.446-0.680) | (0.501-0.770) | (0.554-0.862) | (0.606-0.957) | (0.671-1.09) | (0.716-1.19) |  |
| 10-min                                                                                             | 0.328         | 0.428         | 0.578         | 0.694         | 0.846         | 0.963         | 1.08          | 1.20          | 1.36         | 1.49         |  |
|                                                                                                    | (0.271-0.406) | (0.355-0.529) | (0.473-0.712) | (0.564-0.850) | (0.678-1.03)  | (0.763-1.17)  | (0.843-1.31)  | (0.922-1.46)  | (1.02-1.65)  | (1.09-1.81)  |  |
| 15-min                                                                                             | 0.407         | 0.531         | 0.717         | 0.860         | 1.05          | 1.19          | 1.34          | <b>1.49</b>   | 1.69         | 1.84         |  |
|                                                                                                    | (0.336-0.503) | (0.440-0.656) | (0.587-0.883) | (0.699-1.05)  | (0.841-1.28)  | (0.946-1.45)  | (1.05-1.63)   | (1.14-1.81)   | (1.26-2.05)  | (1.35-2.24)  |  |
| 30-min                                                                                             | 0.548         | 0.715         | 0.965         | <b>1.16</b>   | <b>1.41</b>   | <b>1.61</b>   | 1.81          | 2.01          | <b>2.28</b>  | 2.48         |  |
|                                                                                                    | (0.452-0.677) | (0.592-0.884) | (0.790-1.19)  | (0.942-1.42)  | (1.13-1.73)   | (1.27-1.96)   | (1.41-2.19)   | (1.54-2.43)   | (1.70-2.76)  | (1.82-3.02)  |  |
| 60-min                                                                                             | 0.678         | 0.885         | 1.19          | <b>1.43</b>   | 1.75          | 1.99          | 2.24          | 2.48          | 2.82         | 3.07         |  |
|                                                                                                    | (0.560-0.838) | (0.733-1.09)  | (0.978-1.47)  | (1.17-1.76)   | (1.40-2.14)   | (1.58-2.42)   | (1.74-2.71)   | (1.91-3.01)   | (2.11-3.42)  | (2.25-3.74)  |  |
| 2-hr                                                                                               | 0.789         | 1.02          | 1.35          | <b>1.61</b>   | <b>1.96</b>   | <b>2.2</b> 3  | 2.50          | 2.78          | 3.15         | 3.44         |  |
|                                                                                                    | (0.661-0.956) | (0.852-1.24)  | (1.13-1.64)   | (1.33-1.95)   | (1.60-2.36)   | (1.79-2.67)   | (1.98-2.99)   | (2.16-3.32)   | (2.40-3.76)  | (2.57-4.13)  |  |
| 3-hr                                                                                               | 0.833         | 1.06          | <b>1.40</b>   | 1.66          | 2.02          | 2.30          | 2.60          | 2.92          | 3.35         | 3.70         |  |
|                                                                                                    | (0.696-1.02)  | (0.894-1.30)  | (1.17-1.70)   | (1.37-2.01)   | (1.65-2.43)   | (1.86-2.77)   | (2.06-3.12)   | (2.27-3.49)   | (2.53-4.01)  | (2.73-4.43)  |  |
| 6-hr                                                                                               | 0.984         | <b>1.24</b>   | <b>1.59</b>   | <b>1.86</b>   | <b>2.23</b>   | 2.53          | 2.83          | 3.14          | 3.57         | 3.90         |  |
|                                                                                                    | (0.846-1.17)  | (1.07-1.48)   | (1.36-1.88)   | (1.57-2.19)   | (1.86-2.62)   | (2.08-2.95)   | (2.30-3.30)   | (2.50-3.67)   | (2.77-4.17)  | (2.96-4.56)  |  |
| 12-hr                                                                                              | 1.12          | 1.41          | <b>1.78</b>   | 2.07          | 2.46          | 2.77          | 3.08          | 3.39          | 3.81         | 4.13         |  |
|                                                                                                    | (0.970-1.32)  | (1.22-1.66)   | (1.53-2.08)   | (1.77-2.42)   | (2.08-2.87)   | (2.31-3.21)   | (2.53-3.57)   | (2.76-3.94)   | (3.02-4.44)  | (3.22-4.85)  |  |
| 24-hr                                                                                              | <b>1.28</b>   | <b>1.62</b>   | 2.09          | 2.47          | 3.00          | 3.41          | 3.85          | 4.30          | 4.93         | 5.44         |  |
|                                                                                                    | (1.11-1.49)   | (1.41-1.89)   | (1.81-2.44)   | (2.13-2.86)   | (2.56-3.46)   | (2.89-3.94)   | (3.23-4.45)   | (3.57-4.98)   | (4.02-5.73)  | (4.37-6.35)  |  |
| 2-day                                                                                              | 1.37          | 1.75          | 2.28          | 2.71          | 3.31          | 3.78          | 4.28          | 4.80          | 5.53         | 6.11         |  |
|                                                                                                    | (1.18-1.59)   | (1.51-2.03)   | (1.96-2.64)   | (2.32-3.13)   | (2.82-3.82)   | (3.19-4.37)   | (3.58-4.96)   | (3.97-5.57)   | (4.50-6.45)  | (4.90-7.17)  |  |
| 3-day                                                                                              | <b>1.45</b>   | 1.86          | 2.45          | 2.92          | 3.59          | 4.13          | <b>4.71</b>   | 5.31          | 6.17         | 6.86         |  |
|                                                                                                    | (1.26-1.69)   | (1.61-2.16)   | (2.11-2.83)   | (2.52-3.38)   | (3.07-4.15)   | (3.50-4.77)   | (3.95-5.44)   | (4.42-6.16)   | (5.05-7.17)  | (5.55-8.02)  |  |
| 4-day                                                                                              | <b>1.54</b>   | 1.97          | 2.62          | 3.14          | 3.88          | 4.48          | <b>5.13</b>   | 5.82          | 6.80         | 7.61         |  |
|                                                                                                    | (1.34-1.79)   | (1.72-2.29)   | (2.27-3.02)   | (2.71-3.62)   | (3.33-4.47)   | (3.81-5.17)   | (4.33-5.93)   | (4.86-5.74)   | (5.61-7.90)  | (6.20-8.87)  |  |
| 7-day                                                                                              | 1.74          | 2.23          | 2.95          | 3.55          | 4.39          | 5.08          | 5.81          | 6.60          | 7.72         | 8.64         |  |
|                                                                                                    | (1.50-2.03)   | (1.92-2.59)   | (2.55-3.43)   | (3.05-4.11)   | (3.75-5.08)   | (4.30-5.87)   | (4.88-6.73)   | (5.49-7.67)   | (6.33-9.00)  | (7.00-10.1)  |  |
| 10-day                                                                                             | 1.89          | 2.43          | 3.22          | 3.85          | 4.76          | 5.49          | 6.27          | 7.09          | 8.27         | 9.22         |  |
|                                                                                                    | (1.64-2.19)   | (2.11-2.81)   | (2.78-3.71)   | (3.32-4.44)   | (4.07-5.47)   | (4.66-6.31)   | (5.29-7.22)   | (5.93-8.19)   | (6.82-9.58)  | (7.50-10.7)  |  |
| 20-day                                                                                             | 2.34          | 3.01          | 3.98          | 4.72          | 5.73          | 6.51          | 7.32          | 8.14          | 9.27         | <b>10.1</b>  |  |
|                                                                                                    | (2.04-2.68)   | (2.63-3.45)   | (3.47-4.56)   | (4.10-5.40)   | (4.95-6.56)   | (5.60-7.45)   | (6.25-8.39)   | (6.91-9.36)   | (7.79-10.7)  | (8.44-11.8)  |  |
| 30-day                                                                                             | <b>2.75</b>   | 3.54          | 4.67          | 5.54          | 6.72          | 7.63          | 8.56          | 9.52          | <b>10.8</b>  | <b>11.8</b>  |  |
|                                                                                                    | (2.38-3.17)   | (3.07-4.08)   | (4.04-5.38)   | (4.78-6.37)   | (5.76-7.71)   | (6.51-8.75)   | (7.28-9.84)   | (8.04-10.9)   | (9.05-12.5)  | (9.81-13.7)  |  |
| 45-day                                                                                             | 3.22          | 4.15          | 5.48          | 6.48          | 7.80          | 8.81          | 9.84          | 10.9          | <b>12.3</b>  | <b>13.4</b>  |  |
|                                                                                                    | (2.81-3.68)   | (3.62-4.75)   | (4.77-6.26)   | (5.62-7.40)   | (6.74-8.92)   | (7.58-10.1)   | (8.42-11.3)   | (9.26-12.5)   | (10.4-14.2)  | (11.2-15.5)  |  |
| 60-day                                                                                             | 3.57          | <b>4.62</b>   | 6.08          | 7.16          | <b>8.58</b>   | 9.64          | 10.7          | <b>11.8</b>   | 13.2         | <b>14.3</b>  |  |
|                                                                                                    | (3.12-4.07)   | (4.04-5.25)   | (5.32-6.92)   | (6.24-8.14)   | (7.45-9.75)   | (8.34-11.0)   | (9.22-12.2)   | (10.1-13.5)   | (11.2-15.2)  | (12.0-16.5)  |  |




<sup>1</sup> Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS)

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

# **Elevated Risk of Canal Damage**

- Highest risk areas identified
- Why vulnerable now?
  - $\,\circ\,$  Uniform design storm used
  - $\circ$  Climate change
  - Changes in embankment crest elevation over 30 years of operations / weather
  - $\,\circ\,$  1960's vs 2020's technology used



### **Addressing Prioritized Risk**

#### 21 areas with elevated risk identified Generally, showed overtopping of existing dike

| CAP<br>Priority | Problem<br>ID | Milepost | Name                                       | Downstream          | 2022<br>Evaluation | 2010 Evaluation  | Fill<br>Percentage* | Estimated Max Fill**                                                                                                                                                      |    | proximate<br>oject Cost | 200   |
|-----------------|---------------|----------|--------------------------------------------|---------------------|--------------------|------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------------|-------|
| 5               | 1             | 127.80   | Wittmann 235th Ave & Pinnacle Peak Rd      | Desert              | 4                  | Further Analysis | 80%                 | 12 feet @ Wash Siphon @ MP 127.796                                                                                                                                        | \$ | 6,000,000               | and a |
| 5               | 2             | 129.75   | Wittmann Iona Wash                         | Desert              | 4                  | Further Analysis | 0%                  | Confirmed zero fill.                                                                                                                                                      | \$ | 3,300,000               | -     |
| 5               | 3             | 131.94   | Wittmann 211th Ave & Patton Rd             | Urbanization        | 5                  | Okay             | 0%                  | Confirmed zero fill.                                                                                                                                                      |    | 3,200,000               | 85    |
| 5               | 4             | 134.17   | Wittmann Wittmann Wash                     | Urbanization/Desert | 4                  | Problem          | 2%                  | Short length of fill that starts 100' west of the<br>eastbound 60 bridge and is between 6 and 10 feet<br>deep. Not sure this is accurate with the bridge<br>improvements. | \$ | 4,900,000               | /     |
| 5               | 5             | 138.66   | Wittmann East of US60                      | Urbanization/Desert | 5                  | Problem          | 3%                  | 12 feet @ 3 - 72" Overchute Pipes @ MP 140.084                                                                                                                            | \$ | 14,900,000              | 243   |
| 1               | 6             | 157.68   | Skunk Creek                                | Urbanization        | 5                  | Problem          | 0%                  | Confirmed zero fill.                                                                                                                                                      | \$ | 400,000                 |       |
| 1               | 7             | 157.68   | Sonoran Wash                               | Urbanization        | 5                  | Okay             | 0%                  | Confirmed zero fill.                                                                                                                                                      | \$ | 1,400,000               | XE    |
| 3               | 8             | 179.0    | Scottsdale Lost Dog Wash                   | Urbanization        | 5                  | Problem          | 0%                  | Confirmed zero fill.                                                                                                                                                      | \$ | 1,600,000               | 42    |
| 3               | 9             | 179.80   | Scottsdale Wash B                          | Urbanization        | 5                  | Problem          | 35%                 | 5 feet @ 3 -72" Overchutes Pipes @ MP 179.801                                                                                                                             | \$ | 1,300,000               |       |
| 4               | 10            | 181.67   | Doubletree Ranch Rd at SRPMIC              | Desert              | 4                  | No Revised Hydro | 3%                  | 4.5 feet @ MP 181.125                                                                                                                                                     | \$ | 2,300,000               |       |
| 2               | 11            | 187.23   | East of SR87 Upstream of Salt River Siphon | Desert              | 4                  | No Revised Hydro | 84%                 | 20 feet @ 4 - 42" Pipe Culverts @ MP 187.231                                                                                                                              | \$ | 2,300,000               |       |
| 6               | 12            | 233.44   | South of Gila River Siphon                 | Agricultural        | 4                  | Problem          | 0%                  | Confirmed zero fill.                                                                                                                                                      | \$ | 6,000,000               | 220   |
| STUDY 2         | 13            | 240.65   | North of Cactus Forest Rd                  | Agricultural        | 4                  | Problem          | 14-22%              | 3.5 feet @ MP 239.23                                                                                                                                                      | \$ | 25,300,000              |       |
| STUDY 2         | 14            | 244.97   | Coolidge Airport                           | Desert              | 3                  | Okay             | 21%                 | 3.5 feet @ 2 - 4'x6' Box Culvert @ MP 244.967                                                                                                                             | \$ | 16,600,000              |       |
| STUDY 1         | 15            | 262.59   | Picacho - Phillips Rd                      | Desert              | 4                  | No Revised Hydro | 67%                 | 25 feet @ MP 262.35                                                                                                                                                       | \$ | 4,500,000               |       |
| STUDY 1         | 16            | 266.5    | West of McClellan Wash Siphon              | Desert              | 3                  | No Revised Hydro | 0%                  | 4 feet @ 72" Overchute Pipe @ MP 265.848                                                                                                                                  | \$ | 7,200,000               |       |
| STUDY 1         | 17            | 273      | Red Rock Downstream of Pecan Rd Dike       | Agricultural        | 4                  | Problem          | 100%                | 7 feet @ 18" Overchute Pipe @ MP 273.455                                                                                                                                  | \$ | 19,000,000              | 1     |
| 8               | 18            | 279.65   | Downstream of Red Rock Pumping Plant       | Desert              | 4                  | Problem          | 0%                  | Confirmed zero fill.                                                                                                                                                      | \$ | 20,000,000              |       |
| 9               | 19            | 287.92   | Marana Owl Head Ranch Rd                   | Urbanization/Desert | 5                  | Problem          | 0%                  | 3 feet @ MP 287.207                                                                                                                                                       | \$ | 7,800,000               |       |
| 7               | 20            | 300.59   | South of Marana Airport                    | Desert              | 4                  | No Revised Hydro | 34%                 | 6 feet @ MP 300                                                                                                                                                           | \$ | 4,300,000               |       |
| STUDY 4         | 21            | 305.5    | Downstream of Sandario Pumping Plant       | Desert              | 4                  | Further Analysis | 0%                  | Confirmed zero fill.                                                                                                                                                      |    | 2,100,000               | _     |

