

ARIZONA RECONSULTATION COMMITTEE

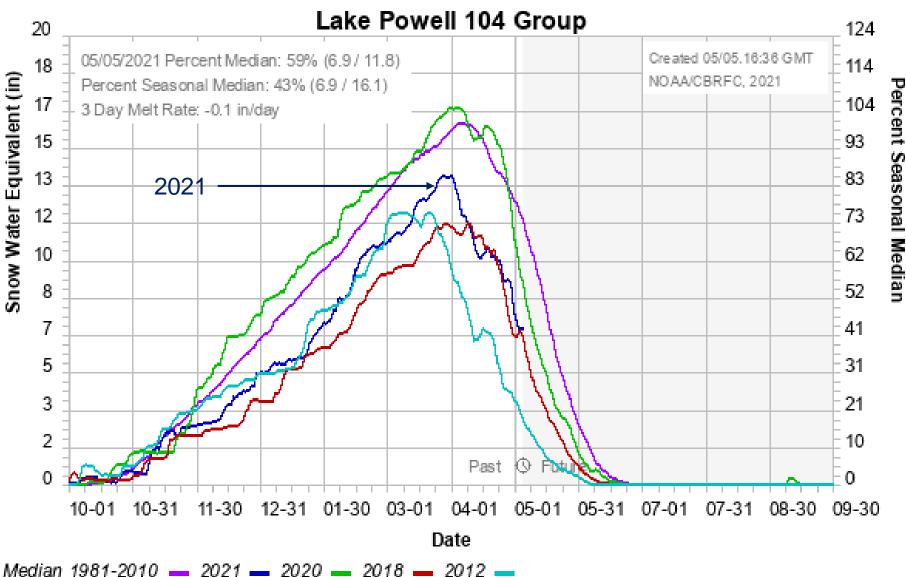
Modeling and Analysis Work Group #5

May 13, 2021

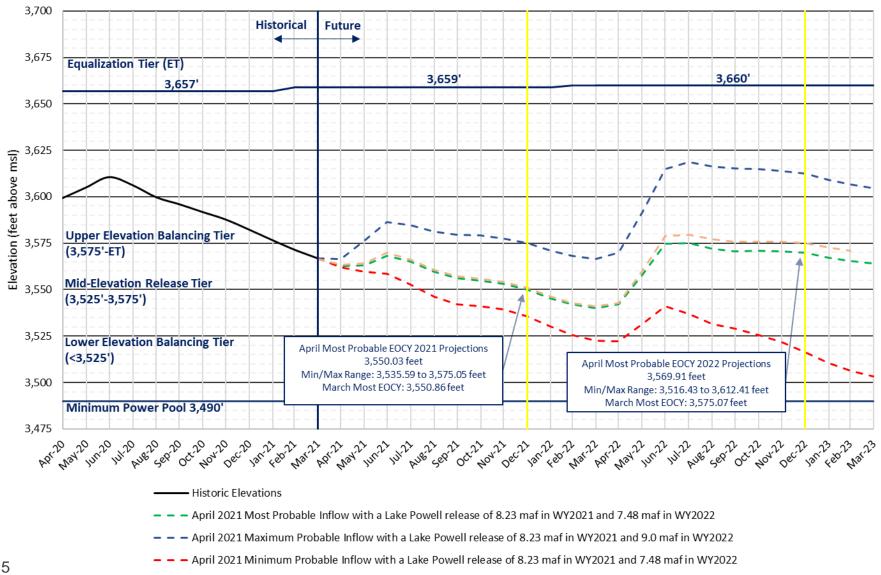
Meeting Logistics Summary

- Roll Call
 - Members will unmute and acknowledge their attendance when their name is called. Roll will be taken again to ensure members have returned from the break.
- Modeling and Analysis Workgroup Members
 - Use the WebEx "raise hand" feature to request to speak or ask questions.
 - Wait to be recognized before speaking to ensure clear communication and remain muted when not speaking.
- Livestream Attendees
 - Electronic public comment forms are available at <u>cap-az.com/ARC</u> for anyone wishing to submit a comment during the meeting.
 - Submissions will be held until the Public Comment period at the end of the meeting.
- Modeling and Analysis Workgroup and ARC Information
 - Meeting materials have been posted on the ADWR and CAP ARC pages: <u>cap-az.com/ARC</u> or <u>new.azwater.gov/ARC</u>.

Meeting Agenda


- Review of current Colorado River hydrology and projections
- Update from MAWG #4
- Review of pre-meeting exercise
- Report out from MAWG Members Session
- Discussion of the initial conditions scenario settings
- Public Comment

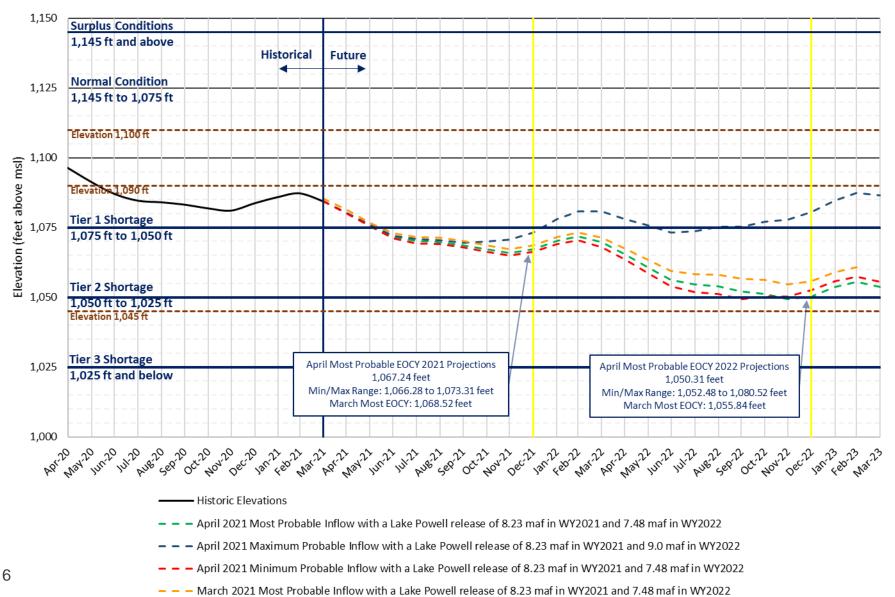
Colorado River System Update


Colorado Basin River Forecast Center

Colorado River System

Lake Powell End of Month Elevations

Historic and Projected based on April and March 2021 24-Month Study Inflow Scenarios



- - March 2021 Most Probable Inflow with a Lake Powell release of 8.23 maf in WY2021 and 7.48 maf in WY2022

Colorado River System

Lake Mead End of Month Elevations

Historic and Projected based on April and March 2021 24-Month Study Inflow Scenarios

Colorado River System Update

Lower Basin – Lake Mead Percent of Traces with Event or System Condition Results from April 2021 CRMMS MTOM Mode/CRSS using

Results from April 2021 CRMMS MTOM Mode/CRSS using the Full Hydrology and Stress Test Hydrology (values in percent)

Event or System Condition	2021	2022	2023	2024	2025	2021	2022	2023	2024	2025
Surplus Condition – any amount (Mead \geq 1,145 ft)	0	0	0	1	4	0	0	0	0	0
Surplus – Flood Control	0	0	0	0	<1	0	0	0	0	0
Normal or ICS Surplus Condition (Mead < 1,145 and > 1,075 ft)	100	3	6	17	19	100	3	8	9	6
Recovery of DCP ICS / Mexico's Water Savings (Mead >/≥ 1,110 ft)	0	0	0	4	9	0	0	0	0	<1
DCP Contribution / Mexico's Water Savings (Mead ≤ 1,090 and > 1,075 ft)	100	3	5	11	10	100	3	7	9	3
Shortage Condition – any amount (Mead \leq 1,075 ft)	0	97	94	82	77	0	97	92	91	94
Shortage / Reduction – 1^{st} level (Mead $\leq 1,075$ and $\geq 1,050$)	0	97	81	37	34	0	97	71	31	33
DCP Contribution / Mexico's Water Savings (Mead ≤ 1,075 and > 1,050 ft)	0	97	81	37	34	0	97	71	31	33
Shortage / Reduction – 2^{nd} level (Mead < 1,050 and \geq 1,025)	0	0	13	44	32	0	0	21	60	36
DCP Contribution / Mexico's Water Savings (Mead ≤ 1,050 and > 1,045 ft)	0	0	11	9	6	0	0	17	6	7
DCP Contribution / Mexico's Water Savings (Mead ≤ 1,045 and > 1,040 ft)	0	0	2	9	6	0	0	4	11	6
DCP Contribution / Mexico's Water Savings (Mead ≤ 1,040 and > 1,035 ft)	0	0	<1	11	8	0	0	0	16	6
DCP Contribution / Mexico's Water Savings (Mead ≤ 1,035 and > 1,030 ft)	0	0	0	10	7	0	0	0	17	6
DCP Contribution / Mexico's Water Savings (Mead ≤ 1,030 and ≥/> 1,025 ft)	0	0	0	5	6	0	0	0	9	10
Shortage / Reduction – 3 rd level (Mead < 1,025)	0	0	0	1	11	0	0	0	<1	25
DCP Contribution / Mexico's Water Savings (Mead ≤ 1,025 ft)</td <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>11</td> <td>0</td> <td>0</td> <td>0</td> <td><1</td> <td>25</td>	0	0	0	1	11	0	0	0	<1	25

Notes:

7

¹ Modeled operations include the 2007 Interim Guidelines, Upper Basin Drought Response Operations, Lower Basin Drought Contingency Plan, and Minute 323, including the Binational Water Scarcity Contingency Plan. ² Reservoir initial conditions on March 31, 2021 were simulated using the April 2021 MTOM based on the CBRFC unregulated inflow forecast ensemble dated April 2, 2021.

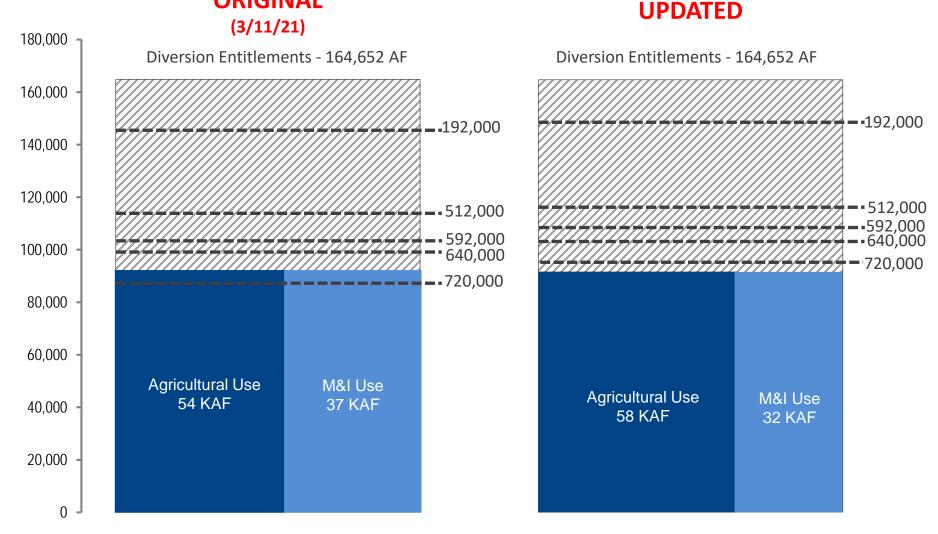
³ Each of the 35 initial conditions from MTOM were coupled with 114 hydrologic inflow sequences from the Full Hydrology that resamples the observed natural flow record from 1906-2019 for a total of 3,990

traces analyzed and with 32 hydrologic inflow sequences from the Stress Test Hydrology that resamples the observed natural flow record from 1988-2019 for a total of 1,120 traces analyzed.

⁴Percentages shown in this table may not be representative of the full range of future possibilities that could occur with different modeling assumptions.

⁵Percentages shown may not sum to 100% due to rounding to the nearest percent.

Summary of MAWG #4 Meeting and Updated Information


- Arizona On-River P4 Uses (updated slide)
- Yuma area operations and salinity management impact available supplies for CAP
- MSCP provides coverage for set reductions in flow and future flows and MSCP impacts will need to be evaluated as part of Reconsultation Process
- CAP supply and impacts evaluated using JSAM Model
 - Updated scenario component (updated slide)
- Introduction to Scenario Development Process

P4 On-River Reductions Consistent with Arizona **Shortage Sharing Recommendation (Current P4 On-River Use**)

ORIGINAL

CAP Use/Supply Factors

Held constant for initial conditions scenario

Factor 1	Factor 2	Factor 3				
Long-Term Contract Full Utilization ¹	Growth in Long-Term Contract Use to Meet Annual Demands ²	Response to Shortage Condition ³				
Slow (by 2055)	Slow (+0.5%)	No change in annual demand No change in LTSC accrual				
Medium (by 2045)	Medium (+1.5%)	Tier 3 Response • -5% annual demands • -10% LTSC accrual				
Fast (by 2035)	Fast (+2.5%)	Tier 3 Response • -15% annual demands • -25% LTSC accrual				

¹ Includes currently allocated but underatilized long-term contract volumes and NiA reallocation (pending tribal settlements, future tribal settlements and M&I reallocation rounds)

² Annual demands include direct deliveries to water treatment plants and annual storage and recovery

³ Progressive reductions by Tier

Summary of Pre-meeting Exercise

- MAWG Members provided responses to "framing questions" in advance of today's meeting
- Responses to those framing questions informed preparation of scenario themes, used to guide development of initial conditions scenarios
 - Summaries of responses to the framing questions will be provided on the ADWR & CAWCD ARC webpages as part of the MAWG 5 meeting materials

Report from MAWG Members Session

- Report from 3 Breakout Groups
- Discussion of Initial Conditions Scenarios
- Potential refinements

MAWG Next Steps

- ADWR & CAWCD, co-chairs of the MAWG, will present a summary of the MAWG efforts during the ARC #3 Meeting
 - May 26th 10:00 Noon (virtual)

Public Comments

Submit questions or comments using the electronic public comment form at <u>cap-az.com/ARC</u>.

ARIZONA RECONSULTATION COMMITTEE

For continued information and updates, visit <u>new.azwater.gov/ARC</u> or <u>cap-az.com/ARC</u>