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Abstract: Understanding the nature of climatic impacts along spatial and temporal dimensions is 

important to the development of timely and spatially relevant mitigation options. However, 

uncertainty in spatial and temporal hydrological patterns on watershed systems is a major 

challenge in long term water resources planning. This challenge is particularly stark for large 

watersheds such as the Colorado River, and regions where interbasin transfers and shared 

demand nodes link multiple watersheds. Here, we developed a non-homogenous hidden Markov 

model (NHMM) that generates an ensemble of plausible future regional scenarios for any 

projected temperature sequence. These ensembles can be helpful for water resources managers, 

infrastructure planners, and government policymakers, with future infrastructure planning and 

building of more resilient communities when it comes to dealing with natural disasters. 

Moreover, these ensembles can be used to generate streamflow ensembles, which, in turn, will be 

a valuable input to study the impact of climate change on regional hydrology. The study 

presented here contributes towards developing methodologies for creating future wet and dry 

scenarios at regional scale for large watersheds and regions which are composed of complex 

interconnecting system networks and exhibit strong climate variability on a variety of time scales 

and different regions. 

1.0 Introduction 

Uncertainty in spatio-temporal hydrological patterns is a major challenge in long-term water 

resources planning to inform both infrastructure investments and rules for allocations and 

operations. This challenge is particularly stark for large watersheds such as the Colorado River, 

and regions where interbasin transfers and shared demand nodes link multiple watersheds 

(National Research Council, 2007). Increased understanding of spatial correlation of 

hydrological variables can improve water management by assessing the probability of co-

occurrence of drought across a regional watershed or multiple interlinked watersheds.  

Data limitations challenge quantification of regional spatiotemporal patterns from field 

measurements (Betterle et al., 2017; Blöschl et al., 2013; Razavi & Coulibaly, 2013; Sivapalan et 

al., 2003). A variety of statistical methods have been applied to the regionalization of 

hydrological variables such as regression analysis (Merz & Blöschl, 2004), proximity‐based 

methods (Betterle et al., 2019), geostatistical techniques (e.g. inverse distances, kriging, space-

time models) (K. Adamowski & Bocci, 2001; Bourges et al., 2012), and combination of time 

series and spatial statistical methods (J. Adamowski et al., 2013). Despite the flexibility of 

statistical methods, they are limited by computational requirements and data availability (Blöschl 

et al., 2013). Physically‐based classification frameworks also have been used to characterize 

regional hydrological variables (Doulatyari et al., 2017). Critically, these methods are limited by 

the availability of observational data. 
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Paleoclimate reconstruction records are a promising approach for supplementing relatively short 

observational records to better understand the long-term climate variability. These 

reconstructions have been employed to inform water resources planning and policy especially in 

the areas which are prone to high levels of spatiotemporal variability or in case of modeling 

supply systems that span multiple river basins (Carrier et al., 2013; Rice et al., 2009; Woodhouse 

& Lukas, 2006a, 2006b). Reconstructions of the modified Palmer drought severity index (PMDI) 

and temperature across North America are examples of such records (Cook et. al., 2010; Wahl et. 

al., 2012). Recent studies use Living Blended Drought Atlas (Cook et al., 2010) to reconstruct 

streamflow across the U.S (Ho et al., 2017, 2018). While most applications of streamflow 

reconstruction are focused on one site, there is a need to address inter-site dependencies for 

better water supply management of interconnected networks of watersheds for regional water 

supply. A variety of methods (e.g. Hierarchical Clustering Method, Hidden Markov Model) have 

been used to quantify the spatiotemporal structure of paleo reconstructed streamflow (Bracken et 

al., 2016; Carrier et al., 2013; F. Chen et al., 2019; Ho et al., 2016; Rao et al., 2018). For 

example, Bracken et al. (Bracken et al., 2016) reconstructed flows at 20 sites in the Upper 

Colorado River Basin demonstrating the ability to preserve inter-site correlations and dynamic 

representation of uncertainty in each reconstructed year. Progress in regional paleohydrological 

reconstructions opens new opportunities to integrate a better understanding of regional 

hydrological patterns to inform decision making, policy, and management practices for 

networked river systems. However, given the potential for hydrological change driven by a 

changing climate, an understanding of future patterns is also needed. Annually resolved 

temperature reconstructions, like PMDI reconstructions, improve understanding of hydroclimatic 

variability over time scales. Integrating temperature into spatiotemporal models of hydroclimatic 

variables also enables generation of plausible future scenarios by using the General Circulation 

Model (GCM) temperature projections.  

 

Critically, there are difficulties in projecting spatial patterns of hydrological variables across 

multiple sites under future climate scenarios using the GCMs (Vallam & Qin, 2017), as 

projections are coarse and unsuitable for regional studies (Fowler et al., 2007; C.-Y. Xu, 1999). 

To overcome this challenge, Statistical Downscaling methods have been used for climate change 

impact assessment at smaller spatiotemporal scales. These methods are grouped into regression 

modeling, weather generators and weather typing schemes (Vrac & Naveau, 2007). 

Alternatively, Regional Climate Models which are nested in the GCMs can be employed for 

deriving climatic variables for a specific region using Dynamic Downscaling methods which are 

computationally expensive and only available for limited regions (Salehnia et al., 2019; Sunyer 

et al., 2012; Tisseuil et al., 2010; Z. Xu et al., 2019). Dynamic Downscaling methods yield 

spatially distributed fields of climatic variables while preserving certain spatial correlations and 

maintaining physically realistic relationships between climatic variables (Maurer & Hidalgo, 

2008). However, Regional Climate Models are still too coarse for regional hydrological 

applications for which local climate scenarios are necessary (J. Chen et al., 2011). 

 

A variety of statistical methods have been developed to address hydrological variables 

regionalization. A variety of methods such as Hierarchical Clustering Method, Hidden Markov 

Model (HMM), and wavelet analysis have been employed to quantify spatiotemporal 

variabilities while considering climatic states and trends. While in the Hierarchical Clustering 

method a predetermined number of clusters does not need to be specified (Ho et al., 2017), the 
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HMM method provides more useful information in comparison to methods that would seek to 

cluster the time series or find lower dimensional patterns (Ho et al., 2018). Moreover, HMM has 

been widely used for downscaling hydrological variables from GCMs, weather generation and 

modeling reconstructed paleoclimate data. The use of HMM in hydrological modeling is 

motivated by the ability to capture the regime‐switching behavior which is driven by large‐scale 

climate features (Bracken et al., 2014). To quantify spatio-temporal variabilities and understand 

climatic trends, state space models, such as HMMs have been used extensively in climate science 

(Zucchini and Guttorp, 1991; Hughes and Guttorp, 1994; Prairie et. al., 2008; Bracken et. al., 

2014, 2016; Holsclaw et. al., 2017; Ho et. al., 2018; Hernandez et. al., 2020). While the state 

transition probabilities and state distributions are held fixed in classical HMM, the 

nonhomogeneous HMM (NHMM) allows the probabilities or distributions to evolve in time 

based on large-scale atmospheric predictor variables (Hughes & Guttorp, 1994). Such predictor 

variables offer one way to link the HMM, which is constructed based on past observations, to 

future projections.  

 

Previous applications demonstrate that HMM can simulate regional hydrological patterns in 

space and time. However, these models are trained on historic data and do not have the capacity 

to make projections or create scenarios to explore the future. The research questions of the paper 

are: (1) how to generate future hydrological scenarios across the western U.S consistent with 

historic spatio-temporal patterns and future temperature changes?  (2) how to cope with data and 

computationally intensive NHMMs, particularly for a large region? In answering these questions, 

we expand upon prior work by constructing a NHMM that can both characterize historical 

spatiotemporal patterns and make projections informed by temperature projections. Temperature 

is selected as a predictor variable because it is both available in the paleoclimatic record (Wahl 

et. al., 2012) and a well vetted output of GCM projections (Woldemeskel et al., 2016). We also 

apply principal component analysis (PCA) to address the computational complexity of NHMM. 

Further, our approach improves upon traditional time series models which are based on short-

term memory and stationarity that cause a weak persistence and lower probability of long wet 

and dry spells due to a weak autocorrelation (Bracken, 2014). We address these research 

questions in the context of the western United States (U.S). The western U.S. region is an ideal 

test case because of its uncertain climate variability which affects both water resources planning 

and management.  

 

The following section describes the study area, outlines data and analysis methodology. We then 

present our results from k-means clustering analysis, PCA, and NHMM. We close by discussing 

the results and limitations of the study and summarize our conclusions.   

2.0  Materials and Methods 

2.1 Study Area 

 

This study focuses on the western U.S. watersheds, particularly the Colorado River and 

interconnected watersheds linked by interbasin transfers and shared demand nodes, such as Rio 

Grande River Basin, Central Valley Water Project, Southern California, Los Angeles Aqueduct 

source watersheds, Central Utah and Strawberry water project, Arkansas River, South Platte 

River, Little Snake River, Imperial and Coachella Valleys, and part of Mexico. The 

interconnected nature of these watersheds motivates this investigation of regional hydroclimatic 

patterns, as droughts occur at larger spatiotemporal scales for the western part of U.S, typically 
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spreading over hundreds to thousands of square kilometers. Droughts in the western and most of 

the central USA is originated from northwestern direction (Konapala and Mishra, 2017). Hence, 

the study area is defined as 30 – 49 N, 97.1 – 124.9 W (Figure 1).  

 
Figure 1. Map of the Study Area with the HUC-2 hydrologic regions (green polygons). The study area is 

defined as 30 – 49 N, 97.1 – 124.9 W. 

 

Figure 1 shows the study area along with the 11 U.S. Geological Survey (USGS) HUC-2 (2-digit 

hydrologic unit code) hydrologic regions. Spatially gridded PMDI and temperature data are 

extracted based on the HUC-2 regions. More detailed information on the HUC-2 regions is listed 

in Table 1.  
Table 1. Summary of HUC-2 regions for the study area 

Code Name Area (105) km2 

17 Pacific Northwest 7.3 

14 Upper Colorado 2.9 

15 Lower Colorado 4.2 

13 Rio Grande 3.4 

16 Great Basin 3.7 

12 Texas-Gulf 2.2 

18 California 4.4 

10 Missouri 11 

11 Arkansas-White-Red 3.8 

 

2.2 Data  

 

PMDI reconstructions used in this study are obtained from the National Oceanic and 

Atmospheric Administration (NOAA) database (Cook, et. al., 2010). Temperature projections 

are taken from the bias corrected fifth phase of the Coupled Model Intercomparison Project 

(CMIP5) climate projections with the Representative Concentration Pathway (RCP) 4.5 scenario, 

which represents an approximate doubling of carbon dioxide levels relative to pre-industrial 
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levels by 2100 (Voldoire, 2013). Choice of study period is guided by a trade-off between data 

availability in terms of record length and spatial coverage. Annually resolved paleoclimate 

records and temperature projections are used to test hydroclimatic variability over time scales 

related to water resources management and planning. The overview of data used in this study is 

given in Table 2. 
Table 2. Overview of Data 

Data Type Data Period Source 

PMDI reconstructions 1500 - 1980 Cook et. al., 2010 

Temperature reconstructions 1500 - 1980 Wahl et. al., 2012 

Temperature projections 

(CMIP5 – RCP 4.5) 
2020 - 2100 Voldoire, 2013 

 

2.2.1 Living Blended Drought Atlas 

The PMDI is a modification of the Palmer Drought Severity Index (PDSI), which uses readily 

available temperature and precipitation data to calculate relative dryness. The difference between 

PMDI and PDSI is the transition periods between dry and wet conditions. For the PDSI, a 

dry/wet index is calculated when the probability that a drought/wet spell is over is 100%, and 

transition index is assigned when the probability is less than 100%. The PMDI incorporates a 

weighted average of the wet and dry index by using the probability as the weighting factor. Both 

the PMDI and PDSI will have the same value during an established drought or wet spell (i.e., 

when the probability equals to 100%). However, they will have different values during transition 

periods since PMDI has a more gradual transition from one spell to the. PMDI is the operational 

version of the PDSI and the best suited index for operational applications (Heddinghaus and 

Sabol, 1991). The values of PMDI generally range from -6 to +6, where negative values 

represent dry spells, and positive values are wet spells.  

 

This product is well validated, and versions of the NADA have been used extensively in the 

study of North American drought variability (NADA; Cook et. al., 1999). The NADA is 

composed of annually resolved summer (June - August) PDSI reconstructions from a network of 

tree-ring chronologies estimated on a 286-point 2.5 x 2.5 PDSI grid over most of North America 

(Cook et. al., 2007). To better characterize the regional drought variability, an updated version of 

NADA, the Living Blended Drought Atlas version 1 (LBDAv1), was introduced. LBDAv1 

reconstruction includes additional tree ring chronologies and covers North America at a spatial 

resolution of 0.5 x 0.5. To include droughts in the 21st century, The LBDAv1 data is updated 

until 2017. The Living Blended Drought Atlas version 2 (LBDAv2) is based on LBDAv1 and 

calculates a PMDI by recalibrating the PDSI (Cook et. al., 2010). In order to access long term 

drought data and identify the patterns, the PMDI from the LBDAv2 is used in various studies 

(e.g. Burgdof et. al., 2019; Son et. al., 2021). In this study, the observational and paleoclimate 

PMDI records from LBDAv2 between 1500 and 1980 are used for the analysis since the 

availability of observational records is short relative to the time scale of hydrological variability.  

 

2.2.2 Temperature Reconstructions 

 

Temperature reconstructions, like PMDI reconstructions, play a significant role in understanding 

the climate prior to the beginning of the observational records by quantitatively extending the 

record back in time. A tree ring-based reconstruction of western North America annual surface 
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temperature anomalies with a 5 x 5 degree grid cell coverage is used in this study for the period 

of 1500 and 1980. The spatially explicit reconstructions are calculated based on a truncated 

empirical orthogonal function method (Wahl et. al., 2012), and have been used in multiple 

studies (e.g., Anchukaitis et. al., 2013; Lehner et. al., 2017). The reconstructed temperature 

anomalies are used as covariate in the NHMM in order to enable the model to generate plausible 

future scenarios by using GCM temperature output. 

 

2.2.3 Temperature Projections 

 

The Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC - AR5) 

promoted the development of the fifth phase of the Coupled Model Intercomparison Project 

(CMIP5) to improve understanding of climate and provide estimation on future climate change 

consequences. Model simulations encompass the period of 1900 - 2100. During the historical 

period (1900 - 2005), the CMIP5 experiment simulates temperature with forcings driven by 

greenhouse gasses and aerosols due to human activities on climate, land use change, changes in 

solar radiation, and natural sources, such as volcanic activities, solar irradiance (Swain & 

Hayhoe, 2015). The future period of the CMIP5 climate projections covers the period of 2006 - 

2100, and it is bias corrected. In this study, we used the bias corrected 1x1 degree grid cell 

coverage CMIP5 climate projections with the Representative Concentration Pathway (RCP) 4.5 

scenario, which represents an approximate doubling of carbon dioxide levels relative to pre-

industrial levels by 2100 (Voldoire, 2013). Annual mean surface temperature anomalies are 

calculated to be compatible with the historical temperature reconstructions. In order to enable 

NHMM to generate ensemble of future regional PMDI for any projected temperature sequence, 

anomalies are estimated from 1900 to 2100 by subtraction of the average temperature values for 

each grid cell between 1900 and 1980. 

 

2.3 Methods 

 

In this study we develop a NHMM of PMDI in the western U.S. with temperature as a covariate. 

To reduce the computational demands, we apply Principal Component Analysis.   

 

2.3.1 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is a multivariate technique that reduces a data set 

containing many variables to a data set having fewer new variables. These new variables are 

linear combinations of the original variables, and they have high variance while being 

uncorrelated with each other. The PCA method can represent much more compact data variations 

for atmospheric and other geophysical fields, which exhibit many large correlations among the 

variables (Wilks, 2011). Many studies have used the PCA in climate and hydrologic sciences to 

describe dominant patterns of observed records (e.g., Bethere et. al., 2017; Balling et al., 2007; 

Lins, 1997).  

 

The aim of PCA is to explain a majority of the variance in the original data with a smaller 

number of variable dimensions, thereby reducing complex temporal and spatial climatic data sets 

to interpretable abstractions (White et. al., 1991). Some researchers have used PCA to examine 

spatial variability of wet and dry periods (Eder et. al., 1987; Raziei et. al., 2008; Ogunrinde et. 

al., 2020; Huang et. al., 2022) while others have applied PCA for dimension reduction. 
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Malmgren and Winter (1999) used PCA with varimax rotation to seasonal data in order to 

decrease dimensionality of their data in Puerto Rico. Furthermore, in order to avoid overfitting 

and multicollinearity, PCA is employed to reduce high dimension of drought related variables 

and indices (Hao et. al., 2018).  

 

In this study, PCA is used to reduce the dimensionality of large PMDI and temperature 

reconstruction records, increasing interpretability while minimizing information loss. All data is 

scaled and centered while performing the PCA. The number of principle components (PCs) are 

determined by calculating cumulative explained variance ratio, which is a function of the number 

of components. A scree plot is the common approach to depict this ratio, and select number of 

PCs (Cattel, 1966). It shows the curve for explained variance related to each successive PC. The 

criterion of scree plot looks for a break (or elbow in the curve) between the components and 

selects all components just before the line flattens out. Note that as an alternative method for 

dimensional reduction, we also tested k-means clustering but the results were not satisfactory for 

this application. The methodology and results for the k-means clustering analysis are presented 

in Appendix A. 

  

2.3.2 Non-Homogenous Hidden Markov Model (NHMM) 

Hidden Markov models (HMMs) are statistical models that generate a variable sequence from a 

distribution based on the state of an underlying and unobserved Markov process (Zucchini et. al., 

2009). In the classical homogeneous HMMs, a system changes between unobserved or hidden 

states characterized by transition probabilities and a Markov chain. Each state corresponds to a 

probability distribution where observed time series are drawn (Bracken, 2014).  

The time-homogeneity of the classical homogenous HMM can be limiting in practice if 

observations are non-stationary or have seasonal dependence. One approach to relaxing this 

assumption is making transition probabilities to be dependent on covariate time series, which is 

called a non-homogenous HMM (NHMM) (Hughes and Guttorp, 1994; Robertson et. al., 2003; 

Bracken, 2016; Holsclaw et. al., 2017).  Temporal inhomogeneity can also be introduced to the 

emission component of the model by allowing the parameters of the emission distributions to 

vary with time and location as a function of covariates (Holsclaw et. al., 2017).  

 

According to Hughes and Guttorp (1994), it is possible to describe the historical relationships 

between atmospheric circulation and a given process using NHMMs. It also allows simulation of 

space-time realizations of a regional hydrologic process conditional on a sequence of 

atmospheric data. Analogously, we here create space-time realizations of PMDI conditional on 

temperature, which is physically linked to PMDI through atmospheric water demand. 

Furthermore, this enables use of GCM results from climate scenarios to project the impacts of 

such climate changes on regional hydrological processes. Here, we adopt a Gaussian NHMM, 

which uses the spatio-temporal historical data (e.g., PMDI reconstructions) and an exogenous 

variable (e.g., temperature reconstructions). Once the model is fit, it can be applied to create an 

ensemble of space-time realizations of PMDI conditional on projected temperature changes by 

linking transition probabilities between states and emission distribution parameters to GCM 

generated temperature. An ensemble of state sequences is generated based on the transition 

probabilities by iterating the fitted NHMM 100 times (Figure 2). Then, a unique mean and 

standard deviation are calculated for each location (e.g., clusters/PCs) for a given state based on 

the projected temperature at that location and time. Figure 3 shows the structure of the model. 
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Figure 2. Flow diagram of methodology to fit NHMM and to apply NHMM to simulate PMDI and 

calculate pseudo-residuals. 

 

 
Figure 3. Structure of NHMM. Y represents the predictors (additional variable, such as temperature), X 

represents the variable occurrences (such as, PMDI), and C represents the number of hidden states 

(adapted from Zucchini et. al., 2009). 

 

The model is fitted with a range of hidden states, then Bayesian Information Criterion (BIC) and 

Akaike’s Information Criterion (AIC) are used for model selection. BIC seeks to maximize 

model consistency while AIC seeks to maximize model efficiency (Celeux and Durand, 2008). 

There are theoretical questions about the use of BIC and AIC in this context. While BIC has a 

tendency to underestimate the number of hidden states, AIC demonstrates a tendency to overfit 

the number of hidden states in an HMM (Celeux and Durand, 2008; Buckby et. al., 2020). The 

appropriate number of hidden states in an HMM can be determined by the minimum BIC and/or 

AIC value (Bacci, et. al., 2014). However, both AIC and BIC can be used to determine a range of 

plausible model sizes by model averaging (Diziak et. al, 2020). Here, we select a mid-point of 

hidden states of models to balance the goals of efficiency and consistency, if the two metrics 

disagree. 
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To assess whether the fitted model describes the data well, pseudo-residuals (also known as 

quantile residuals) are calculated as an additional check on model performance based on the 

information provided following the procedure detailed by Zucchini and MacDonald (2009). This 

cannot be done by analyzing only standard residuals because the observations are explained by 

different distributions depending on the active hidden state. Following Zucchini and MacDonald 

(2009), we concluded that the observations are modeled well if pseudo-residuals are close to 

standard normal distribution. We visually assessed the residuals and pseudo-residuals using 

histograms and the Shapiro-Wilk normality test (Shapiro and Chen, 1968).  

3.0  Results 
 

The results of NHMM with PCA are presented in this section. The identified optimal number of 

PCs for the western U.S. are used as an input to NHMM models. The number of hidden states for 

the NHMM is determined based on the model selection criteria mentioned above. After model 

fit, pseudo-residual analysis and Shapiro-Wilk test are conducted. The results show that pseudo-

residuals are close to normal distribution. After developing the model for the historic training 

period, multiple plausible sequences of states are generated for the forecast period. Future PMDI 

scenarios, informed by a specific temperature scenario, are created over the western U.S. 

 

3.1 PCA 

The scree plot and the cumulative variance plot criterion are used to select the appropriate 

number of PCs (Cangelosi and Goriely, 2007) (Figure 6). 

 
Figure 6. PCA selection metrics for the PMDI reconstructions: A) Scree plot and B) Cumulative 

explained variance plot. 

 

Six PCs are retained for the PMDI reconstructions, explaining 81.4 percent of the variance. For 

temperature reconstructions, ten PCs, explaining 80.5 percent of the variance are used. Figure 7 

shows spatial patterns of the first six PCs that are used in the NHMM for the PMDI 

reconstructions. 
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Figure 7.  Spatial pattern of loadings of first six PCs based on PMDI reconstructions. 

 

3.2 Non-Homogenous Hidden Markov Model 

The minimum BIC is calculated at state one and the minimum AIC is found at state eight. A 

NHMM model with four hidden states is selected as the mid-point between AIC and BIC criteria. 

(Table 3). 

Table 3. NHMM model selection 

NHMM 

State 
AIC BIC 

State=1 26945.38 27246.04 

State=2 26934.16 27548.01 

State=3 26941.9 27877.29 

State=4 26955.31 28220.6 

State=5 26956.99 28560.52 

State=6 26986.19 28936.32 

State=7 27025.55 29330.63 

State=8 26917.68 29586.06 

State=9 27113.9 30153.93 
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The most likely sequence of states through time is revealed by the Viterbi algorithm. The 

resulting hidden states enable examination of spatio-temporal patterns over the western U.S. 

Figure 8 shows PMDI and temperature reconstruction anomaly time series together with most 

likely hidden states over the western U.S. during training period. Positive PMDI represents wet 

conditions while negative PMDI represents dry conditions. States represent wet, average, and dry 

conditions.  

 
Figure 8.  A) Annual mean PMDI reconstruction time series over the western U.S., B) Annual mean 

temperature reconstruction anomaly time series over the western U.S., and C) Most likely states over the 

western U.S. 

 

The histograms of the pseudo-residuals are plotted to check whether the pseudo-residuals are 

normally distributed. All histograms are found to be close to normal distribution due to their 

approximate symmetric bell-shape. Figure 9 illustrates the distribution of pseudo-residuals for 

the first PC of NHMM over the western U.S. In addition to histograms, the Shapiro-Wilk test is 

applied and p-values for pseudo-residuals are found to be greater than the chosen alpha level of 

0.05, which confirms the normality of the pseudo-residuals.  
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Figure 9. Distribution of pseudo-residuals for the first PC. Distributions of pseudo-residuals for all PCs 

are close to normal distribution. 

 
Given the model developed for the historic training period, one can generate plausible sequences 

of hidden states for the forecast period. Figure 10 illustrates the one stochastic scenario of system 

states (e.g., iteration 1) at each time step during the forecast period. After identifying the system 

states, the NHMM is used to simulate values of PMDI by sampling from the state distributions. 

Future PMDI scenarios, informed by a specific temperature scenario, are created from 2020 to 

2100 for the western U.S by using the model.  

 

 
Figure 10. One stochastic scenario of system states in the western U.S. (Scenario – 1). 
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Figure 11 shows the spatial pattern of annual temperature reconstruction anomalies and 

simulated annual PMDI reconstructions in the study area for one historic and one projected year. 

The annual temperature anomaly significantly rises by the end of the century all over the western 

U.S under the RCP 8.5 scenario.  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Spatial comparison of annual temperature reconstruction anomalies and 

simulated annual PMDI reconstructions for years 1500 and 2100 in the western U.S. 

(Scenario -1). 

Quantile range for ensemble of ten sequences of scenarios over time for the case study area are 

shown in Figure 12. The figure shows changes in PMDI variability (quantile differences) of each 

ten scenarios over time. The wide range indicates high variability, and the small range specifies 

low variability. 
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Figure 12. Quantile range for ensemble of ten sequences of scenarios over time for the western 

U.S. 

 

4.0 Discussion 

Traditional stochastic time series models are not able to capture regime-switching behavior due 

to their short-term memory and stationarity. This leads to a weak persistence and lower 

probability of long wet and dry periods due to a weak autocorrelation (Bracken et. al., 2014). 

Hence, these models misrepresent the risk of prolonged wet and dry periods, consequently 

effects both water resources planning and management (Bracken et. al., 2014). Additionally, 

some time series models leveraged currently, such as HMMs, perform satisfactorily in capturing 

the regime-switching behavior (Fortin et. al., 2004; Bracken et. al., 2014, 2016; Ho et. al., 2018), 

however they fail to reproduce the variability of non-stationary given that exogenous climate 

predictors are not considered. Using climate-informed variables (e.g., temperature) as covariates 

can help capture the variations in a hydrological variable (e.g., PMDI) that are influenced by the 

covariates through physical processes. Thus, utilizing a covariate that shows changes in climate 

makes potentially more skillful models in capturing persistence and model nonstationary (Ho et. 

al., 2018; Vinnarasi and Dhanya, 2022). One of the contributions of this study is to address the 

limitation of capturing nonstationary features while modelling the regime switching 

spatiotemporal behavior. The developed model can capture nonstationary by allowing the 

parameters of the emission distributions to vary with time and location as a function of a 

covariate.  

 

Data limitations challenge quantification of regional spatiotemporal patterns (Betterle et al., 

2017; Blöschl et al., 2013; Razavi & Coulibaly, 2013; Sivapalan et al., 2003). Having relatively 

short instrumental records is a key limitation to assess spatial patterns in wet and dry periods in 

the U.S. for long time scales. Paleoclimate reconstructions offer a long-term perspective on 

climatic variability by supplementing relatively short observation data (Ho et. al., 2018). 

Annually resolved paleoclimate records provide a framework for exploring policy and 
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management alternatives to mitigate or adapt the future changes (USGS, 2022). Another 

advantage of this study is that we constructed the NHMM with paleoclimate time series of 

PMDI, and temperature records leveraged together with observed data to better understand the 

long-term climate variability which is relevant to water resources management and planning.  

 

One benefit of using PMDI reconstructions to define wet and drought events is that this index is 

a modified version of the PDSI, which identifies climate events solely based on hydroclimatic 

variability, rather than including human impact. The PDSI and PMDI will result in equal values 

in periods that are clearly wet or dry, but the PMDI will yield smoother transitions between wet 

and dry periods (Heddinghaus and Sabol, 1991). Thus, PMDI has been used in many previous 

studies to identify wet and dry periods (Diffenbaugh et. al., 2015; Pongracz et. al., 1999; Wahl 

et. al., 2022).  

 

Given the high dimensionality of the paleoreconstruction data, PCA is applied to reduce the 

dimensionality of data and thereby enable computationally efficient NHMM. Precisely, the 

computation time is seven minutes for the model to generate an ensemble of 100 sequences of 

scenarios. All experiments are run on a 64-bit computer with Intel(R) Core (TM) i7-8665U CPU 

@ 1.90GHz 2.11 GHz processor and 32 GB of RAM running Windows 10 Enterprise. Another 

advantage of developing the NHMM with PCA output is its grid-based representation, which 

provides insight into wet and dry events by representing a specific PMDI value at a given time 

and state. As shown in Figure 11, the ability to have grid-based representation is of interest for 

local and regional resource managers since it generates realistic and spatially variable scenarios.    

 

Accurate simulation of droughts in GCMs are limited due to the chaotic nature of hydroclimatic 

variables and the complexity of hydroclimatic processes (Ho et. al., 2018). GCMs and regional 

climate models, which use computationally expensive Dynamic Downscaling methods to derive 

specific variables from GCMs, are too coarse for regional hydrological applications (Fowler et 

al., 2007; C.-Y. Xu, 1999; J. Chen et al., 2011). The NHMM simplifies the temporal and spatial 

structures to be parameterized despite its large number of parameters and computational 

complexities (Mehrotra and Sharma, 2005). As seen in the Figure 12, the study presented here is 

able to avoid these issues, creating future PMDI scenarios from year to year at each grid location 

by linking the model with a predictor variable (e.g., temperature projections) and using 

computationally efficient model as mentioned above paragraph. 

 

According to GCM outputs and detailed regional studies, the regional impacts of global warming 

on future water supplies are uncertain and streamflow is sensitive to changes in temperature and 

precipitation (Frederick and Gleick, 1999). For example, McCabe and Wolock (2007) showed 

that 1°C to 2°C increases in temperature could result in substantial water supply shortages in the 

Upper Colorado River Basin. They also reported that future warming could increase the tendency 

of failure to meet the water allocation requirements of the Colorado River Compact. Creation of 

ensembles of regional climate scenarios is necessary for the quantification of climate uncertainty 

in the influence of global warming to address the potential impacts of climate change and climate 

variability (Groves et. al., 2008), hereby informs future infrastructure planning and water policy. 

One of the significant contributions of the paper is that the developed model generates an 

ensemble of plausible future regional PMDI scenarios for any projected temperature sequence. 

These ensembles can be helpful for water resources managers, infrastructure planners, and 
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government policymakers, with future infrastructure planning and building of more resilient 

communities when it comes to dealing with natural disasters. Moreover, streamflow ensembles 

that preserve long-term spatio-temporal variability can be generated by using these ensembles. 

Thereby, play a pivotal role to address creating intersite streamflow reconstructions for better 

water supply management of interconnected networks of watersheds.  

 

An important limitation of this study is that PMDI and temperature reconstructions are based on 

tree-ring chronologies, and the uncertainty increases with the age of the chronology. Therefore, 

the variability of the reconstruction data and subsequent state together with emissions 

distribution is likely to be affected by the changing number of chronologies. To assess whether 

the fitted model describes the data well, pseudo-residuals are calculated since it allows a 

comprehensive residuals analysis in Markov-switching models (Zucchini and MacDonald, 

2009). The distribution of pseudo-residuals for the first PC of NHMM is presented in Figure 9. 

Overall, the developed model appears to fit the data adequately due to their approximately 

normally distributed pseudo-residuals. 

5.0 Conclusion  

The work reported in this paper contributes towards developing methodologies for creating 

future wet and dry (or PMDI) scenarios at local or regional scale for large watersheds and 

regions which are composed of complex interconnecting system networks and exhibit strong 

climate variability on a variety of time scales and different regions. As a first step, PCA is 

performed to the grided PMDI and temperature reconstruction data in order to reduce the 

dimensionality. The model is trained with principal components of PMDI reconstructions and 

principal components of temperature reconstructions as predictor for a period of 481 years from 

1500 and 1980, then most likely hidden states are derived for the western U.S. The developed 

model is capable of representing adequately the reconstruction data since its pseudo-residuals are 

normally distributed. The trained model is applied using the projected temperature from GCM 

output as a forcing variable for a period of 81 years from 2020 to 2100 in order to generate 

plausible future PMDI scenarios and sequences of states. The developed model effectively 

models the regime switching spatiotemporal behavior while capturing the nonstationary in the 

western U.S. Additionally, annually resolved paleoclimate records leveraged together with 

observed data allow for the examination of long-term climatic variability over time scales 

relevant to water resources management and planning to mitigate or adapt to future changes. 

Another advantage of the model is that the NHMM presented here can generate an ensemble of 

future regional PMDI for any projected temperature sequence. These ensembles can be used to 

generate streamflow ensembles and to inform water supply planning. The methodology 

developed here could also be applied using other drought metrices, depending on the application 

of interest. This approach can be used for any region or watershed to better understand the 

spatio-temporal patterns of drought events. An ensemble of plausible future regional PMDI 

scenarios can be used to inform watershed or regional planning and decision making. 

Furthermore, these ensembles can be used to generate streamflow ensembles, which, in turn, will 

be a valuable input to study the impact of climate change on regional hydrology and water 

management.  
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Appendix A 

 

A.1 K-means Clustering 

 

K-means cluster analysis is also used to reduce dimensionality but not pursued in this study due 

to having a major drawback in terms of failing to capture the PMDI variability. The estimated 

cluster centers are found to be close to overall mean of the variables (which is close to zero). The 

methodology and results for the k-means cluster analysis are given in this section.  

 

A. 1.1 Methodology  

Cluster analysis allows the analyst to separate data into groups with similar properties and can 

identify key features in large data sets (Wilks, 2011). It allows the analyst to focus on a higher-

level representation of the data. In addition, it analyzes and explores a dataset to associate objects 

in groups that have common characteristics (Kisilevich, 2009). Two main clustering algorithms, 

hierarchical and nonhierarchical, are used for gridded data. In this study, a nonhierarchical 

clustering approach, k-means clustering is used to combine gridded data based on their temporal 

similarity. K-means clustering is a centroid-based cluster method which it starts by computing 

the centroids for each cluster and then calculates the distances between current data vector and 

each of centroids (Wilks, 2011). The k-means method is a very good approach identifying 

patterns related to mean behavior of Gaussian or Gaussian mixture data (Wilks, 2011; Bracken 

et. al., 2015). K-means clustering has been applied successfully to hydroclimatic variables 

including drought indices (Huang et. al., 2021), precipitation (Marston and Ellis, 2021), and 

temperature records (Yu and Lin, 2018).  

 

The optimal number of clusters is determined with various evaluation metrics, including an 

elbow method with difference in the within cluster sum of square errors, a silhouette index with 

the average distance between clusters, gap statistics with difference in difference, a Calinski-

Harabasz index with the degree of dispersion between clusters, and qualitative analysis on post-

visualization of clusters. The optimal number of clusters are identified for PMDI and temperature 

reconstructions based on majority of the metrics if there is disagreement across metrics.  

 

 A.1.2. Results  

The optimal number of groups formed by the k-means algorithm for the study area was 

determined based on a series of methods described above (Silhouette, Scree plot, Calinski 

criterion, etc.). Silhouette and Scree plots for the PMDI reconstructions in the western U.S. are 

given in Figure A.1 as an example. 
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Figure A.1. K-Means clustering selection metrics for the PMDI reconstructions: A) Scree plot and B) 

Silhouette plot. 

 

Three clusters are identified for PMDI reconstructions, and two clusters are determined for 

temperature reconstructions. The spatial distribution of the center of the grid cells of clusters for 

PMDI and temperature reconstructions are shown in Figure A.2. 

 

 
Figure A.2. Spatial Distribution of A) PMDI and B) temperature reconstruction clusters in the western 

U.S.  

The NHMM model with k-means clustering provides insight into dry and wet events via 

independently Gaussian distributed variables with mean and standard deviation where both mean 

and standard deviation are unique to each cluster for a given state. For example, the driest state is 

identified as state-5 with the lowest mean of 0.033, the wettest state is determined as state-6 with 

the highest mean of 0.146 for the first cluster of the western U.S. for year 1500. (Figure A.3). 
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Figure A.3.  State Distributions for the first cluster of the western U.S. with year of 1500. 

 

Figure A.4 shows PMDI and temperature reconstruction anomaly time series together with most 

likely hidden states for the first cluster during training period. As seen from section A of the 

figure, the estimated cluster centers of PMDI are found to be close to overall mean of the 

variables (which is close to zero). This result is the same for all clusters. Positive PMDI 

represents wet conditions while negative PMDI represents dry conditions. States represent wet, 

average, and dry conditions.  
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Figure A.4. A) Annual mean PMDI reconstruction time series for the first cluster, B) Annual mean 

temperature reconstruction anomaly time series for the first cluster, and C) Most likely states over the 

western U.S. 

 
Figure A.5 One stochastic scenario of system states in the western U.S. (Scenario – 1). 

 

K-means clustering analysis results in having a major drawback in terms of failing to capture the 

PMDI variability over the western U.S. The study region exhibits greater spatio temporal rainfall 

variability, which is closely linked to PMDI. The large spatial extent of the clusters may lead to 

failure capturing the variability due to having extreme values with no similar high- or low-value 

neighbors, as stated in Wong (2021).   

 

 

 

 

 

 

 


