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Abstract 16 
 17 

Understanding factors controlling baseflow (or groundwater discharge) is critical for improving streamflow 18 
prediction skills in the arid southwest US. We used a version of Noah-MP with newly-advanced hydrology 19 
features and the Routing Application for Parallel computation of Discharge (RAPID) to investigate the 20 
impacts of uncertainties in representations of hydrological processes, soil hydraulic parameters, and 21 
precipitation data on baseflow production and streamflow prediction skill. We conducted model 22 
experiments by combining different options of hydrological processes, hydraulic parameters, and 23 
precipitation datasets in the southwest US. These experiments were driven by three gridded precipitation 24 
products: the North American Land Data Assimilation System (NLDAS-2), the Integrated Multi-satellite 25 
Retrievals for GPM (IMERG) Final, and the NOAA Analysis of Record for Calibration (AORC). RAPID 26 
was then used to route Noah-MP modeled surface and subsurface  runoff to predict daily streamflow at 390 27 
USGS gauges. We evaluated the modeled ratio of baseflow to total streamflow (or baseflow index, BFI) 28 
against those derived from the USGS streamflow. Our results suggest that 1) soil water retention curve 29 
model plays a dominant role, with the Van-Genuchten hydraulic scheme reducing the overestimated BFI 30 
produced by the Brooks-Corey (also used by the National Water Model, NWM), 2) hydraulic parameters 31 
strongly affect streamflow prediction, a machine learning-based dataset captures the USGS BFI, showing 32 
a better performance than the optimized NWM by a median KGE of 21%, and 3) the ponding depth 33 
threshold that increases infiltration is preferred. Overall, most of our models with the advanced hydrology 34 
show a better performance in modeling BFI and thus a better skill in streamflow predictions than the 35 
optimized NWM in the dry southwestern river basins. These findings can guide future studies in selecting 36 
reliable schemes and datasets (before calibration) to achieve better streamflow predictions as well as water 37 
resource projections. 38 
 39 
  40 
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1 Introduction 41 
In arid regions, accurate streamflow prediction presents a significant challenge due to complexities in 42 
baseflow generation, which are influenced by highly variable precipitation in time and space, as well as 43 
heterogeneous properties of soil, snow, and vegetation across complex terrain. The complexity of the 44 
hydrological processes in these areas complicates efforts to estimate water availability, which is essential 45 
for effective water resource management, agricultural planning, and disaster preparedness. (Thomas 1994, 46 
Poff, Allan et al. 1997, Su, Lettenmaier et al. 2024). Large-scale hydrological models such as the National 47 
Water Model (NWM) are employed to predict streamflow across the nation. The NWM system integrates 48 
various data sources, including meteorological inputs and land surface characteristics, to provide 49 
comprehensive hydrological insights. Similarly, the performance of other Land surface models such as VIC 50 
(Lohmann, Nolte-Holube et al. 1996), ParFlow-CONUS (Tijerina‐Kreuzer, Condon et al. 2021), and SAC-51 
SMA (Burnash 1995) in arid regions is often limited, as they struggle to accurately simulate the 52 
hydrological dynamics of the dry environments (Wheater and Evans 2009, Sivapalan, Savenije et al. 2012, 53 
Blöschl, Sivapalan et al. 2013, Ghimire, Hansen et al. 2023, Johnson, Fang et al. 2023, Towler, Foks et al. 54 
2023). 55 
 56 
For instance, Salas et al. (2017) evaluated an uncalibrated version of Weather Research and Forecasting 57 
Model Hydrological (WRF-Hydro) and noted relatively weaker performance in the arid regions of the 58 
Texas Gulf Coast basin (Salas, Somos‐Valenzuela et al. 2017). Similarly, Lin et al. (2018) utilized a WRF-59 
Hydro-RAPID framework to simulate streamflow in Texas and identified a significant positive bias over 60 
dry regions, attributing this to overprediction of baseflow and surface runoff (Lin, Rajib et al. 2018). 61 
 62 
Hansen et al. (2019) identified two significant issues with the NWM streamflow hindcasts over the 63 
Colorado River basin. First, they observed that the NWM tends to underestimate the frequency of low 64 
flows. Second, the model inaccurately identifies locations as experiencing low flow where it does not 65 
actually occur, while failing to detect low flow in locations where it is present (Hansen, Shiva et al. 2019). 66 
Towler et al. (2023) reported similar issues in both NWM and the National Hydrologic Model (NHM) at 67 
gauges in the central and southwestern United States. This tendency of underperformance in the arid 68 
southwestern U.S. was also observed in models such as VIC, ParFlow-CONUS, and SAC-SMA (Newman, 69 
Clark et al. 2015, Tijerina‐Kreuzer, Condon et al. 2021, Ghimire, Hansen et al. 2023, Towler, Foks et al. 70 
2023). Despite efforts to improve the Noah-MP land surface exchange scheme of NWM, including various 71 
calibration attempts, predictions in arid regions remain inadequate (Bass, Rahimi et al. 2023, Su, 72 
Lettenmaier et al. 2024). Hence, there is a need for further research to understand the uncertainties in runoff 73 
generation processes to improve their performance in streamflow prediction in the southwestern U.S. 74 
 75 
Large-scale hydrological models often exhibit uncertainties in representing surface runoff and streamflow 76 
generation due to varying approaches for estimating soil hydraulic properties, which are crucial for 77 
understanding these processes (Vereecken, Weihermüller et al. 2019). Baseflow plays a significant role in 78 
streamflow generation, particularly in arid regions where it sustains water flow during dry periods 79 
(Sophocleous 2002). Factors affecting baseflow—and consequently runoff and streamflow—in these 80 
regions include soil moisture content, groundwater recharge rates, soil hydraulic properties, and soil 81 
structure (Scanlon, Keese et al. 2006).  A key concern is the lack of a consistent framework for predicting 82 
effective fluxes and infiltration parameters in LSMs. Additionally, the influence of soil structure on 83 
hydraulic properties, which affects infiltration rates and baseflow, is often overlooked (Vereecken, 84 
Weihermüller et al. 2019). Variations in soil hydraulic schemes significantly impact soil moisture and 85 
drainage(Farmani, Behrangi et al. 2024), both essential for sustaining baseflow (van Dijk 2010) — a key 86 
parameter that may contribute to the poor performance of large-scale hydrological models like NWM in 87 
arid regions. Moreover, while large-scale models often overlook the specific impacts of ponding on soil 88 
moisture (Niu, Fang et al. 2024), some studies have shown the influence of ponding depth on soil moisture 89 
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and water release (Farmani, Behrangi et al. 2024). However, research integrating ponding effects into large-90 
scale models, particularly concerning baseflow in arid regions, remains scant. 91 
 92 
Uncertainties in precipitation data—particularly in amount, intensity, and spatial-temporal resolution—93 
significantly affect runoff, groundwater recharge and streamflow generation. Recharge is governed by 94 
precipitation characteristics such as duration, magnitude, and intensity (Crosbie, McCallum et al. 2012, 95 
Dourte, Shukla et al. 2013, Huang, Wu et al. 2013, Moghisi, Yazdi et al. 2024). While classical theory 96 
asserts that low-intensity rainfall over long periods generates the highest fractional recharge (Dourte, 97 
Shukla et al. 2013), recent studies indicate that in certain regions, such as East Africa and Australia, extreme 98 
rainfall events drive the majority of recharge (Kendy, Gérard‐Marchant et al. 2003, Kendy, Zhang et al. 99 
2004, Crosbie, McCallum et al. 2012). Coarse temporal averaging (e.g., monthly or annual) smooths these 100 
events, underestimating recharge rates. For example, daily versus yearly data can produce recharge 101 
estimates up to nine times higher (Tashie, Mirus et al. 2016, Batalha, Barbosa et al. 2018). This is especially 102 
important in areas with distinct wet and dry seasons, where episodic recharge events are essential for 103 
maintaining baseflow during dry periods. Furthermore, spatial resolution plays a crucial role, as coarse grid 104 
models may fail to capture localized rainfall events, exacerbating uncertainties in recharge and baseflow 105 
predictions (Mileham, Taylor et al. 2009).  106 
 107 
As baseflow is recognized as the primary source of streamflow in dry regions (van Dijk 2010), we 108 
hypothesize that the baseflow generation processes in the hydrological models contribute to the inaccuracies 109 
in streamflow predictions (Figure 1). We used a version of Noah-MP, which is used in NWM as the surface 110 
exchange and runoff generation scheme in NWM, with a newly-advanced hydrology by implementing the 111 
mixed-form Richards equation down to the bedrock alongside the Routing Application for Parallel 112 
computation of Discharge (RAPID, David et al., 2011) to understand the major factors affecting the 113 
baseflow generation for improved streamflow predictions. We conducted various model experiments to 114 
study the sensitivity of baseflow generation to soil hydraulic schemes, soil water retention curve parameter 115 
datasets, model physics (single vs. dual permeability schemes), surface ponding thresholds, and 116 
precipitation datasets across the southwestern US. RAPID was then used to route Noah-MP modeled 117 
surface and subsurface runoff (or groundwater discharge) to predict daily streamflow in 390 USGS gauges 118 
from 1980 to 2019. It should be noted that groundwater discharge and subsurface runoff are considered the 119 
same in Noah-MP. We evaluated the Noah-MP modeled Baseflow Index (BFI) and NWM BFI against 120 
those derived from the USGS streamflow. We aim to provide guidance for future research in selecting the 121 
most reliable schemes and datasets to enhance streamflow predictions, particularly for dry regions. 122 

 

Figure 1 Observed USGS (red) streamflow for the Scott River near Fort Jones, CA – 11519500 station, 
and NWM v2.1 (green) prediction. NWM shows an overestimation of low flows and a gradual slope on 
the falling limbs. 

BFI measures the percentage of streamflow that comes from baseflow over a long time (van Dijk 2010, 123 
Huang, Dong et al. 2021). BFI is commonly used in hydrology to characterize low flow conditions within 124 
a catchment, providing insights into the sustained contribution of groundwater and other delayed sources 125 
to total streamflow (Seo, Mahinthakumar et al. 2018, Yang, Zhang et al. 2018). Previous studies have 126 
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highlighted the importance of BFI in low flow analyses, where it has been integrated with hydrograph 127 
recession methods to gain a comprehensive understanding of low-flow dynamics (Zhang, Zhang et al. 2017, 128 
Sapač, Rusjan et al. 2020, Yang, Li et al. 2020). We used Kling-Gupta Efficiency (KGE) (Gupta, Kling et 129 
al. 2009) to evaluate the streamflow prediction accuracy of various Noah-MP-RAPID scenarios and the 130 
NWM against observed USGS. The Root Mean Square Error (RMSE) of the bottom 30% of streamflow 131 
(Song, Knoben et al. 2024) was also used as a metric to assess the models' performance in capturing the 132 
low flow conditions. 133 

2 Materials and Methods 134 

2.1 Study area 135 
We selected the southwestern U.S. due to the low performance of NWM and models in predicting 136 
streamflow in this region (Towler et al., 2023). We included 390 USGS gauges across five major USGS 137 
two-digit Hydrologic Unit Code (HUC-2) basins (Figure 2): Rio Grande (HUC13), Upper Colorado 138 
(HUC14), Lower Colorado (HUC15), Great Basin (HUC16), and California (HUC18). These basins are 139 
defined using the NHDPlus version 2 geospatial dataset (Horizon Systems Corporation, 2007), which 140 
integrates the National Hydrography Dataset's (NHD) 1:100,000-scale stream network, the 1-arc second 141 
National Elevation Dataset (NED), and the Watershed Boundary Dataset (WBD). The NHDPlus version 2 142 
dataset provides NHDPlus catchments, flowlines, and attributes, utilized for generating river connectivity 143 
files and computing flowline slopes. According to the NHDPlus v2, the selected region includes 479130 144 
river reaches with an average length and catchment of and 2.29 km and 4.23 km2, respectively.   145 
 146 

 
Figure 2. (a) The Southwestern River Basins featuring 390 USGS gauges used in this 
research, along with Shuttle Radar Topography Mission (SRTM) elevation data; (b) aridity 
index, indicator of the degree of dryness of a climate at a specific location; (c) soil depth 
(bedrock); (d) vegetation types; and (e) soil types. For clarity, map (a) shows the NHDPlus 
flowlines with Strahler order >4 (also in Figures 10)  

2.2 Description of Datasets 147 

In this study, we integrated multiple datasets to drive the Noah-MP land surface model and evaluate its 148 
performance in simulating hydrological processes. Specifically, we used precipitation data from NLDAS-149 
2, IMERG, and AORC (Section 2.2.1) and atmospheric forcing data from NLDAS-2 (Section 2.2.2) to 150 
provide comprehensive meteorological inputs for the model simulations. Soil characteristics were derived 151 
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from State Soil Geographic (STATSGO) U.S soil map and USGS 24-category vegetation classification 152 
datasets. Bedrock depth information was obtained from Shangguan et al. (2017) (Section 2.2.5) to enhance 153 
the model's subsurface representations. 154 
 155 

2.2.1 Precipitation Data 156 

We used three precipitation datasets to drive Noah-MP scenarios: the North American Land Data 157 
Assimilation System (NLDAS-2, (Xia, Mitchell et al. 2012)), the Integrated Multi-satellite Retrievals for 158 
GPM (IMERG) Final (Huffman, Bolvin et al. 2020), and the NOAA Analysis of Record for Calibration 159 
(AORC,(Fall, Kitzmiller et al. 2023)). The NLDAS-2 precipitation combines observations and model 160 
reanalysis to support offline land surface modeling. It includes data from sources like NCEP Stage II/IV 161 
analyses and the Climate Prediction Center's gauge-based analysis. NLDAS-2 provides 0.125° × 0.125° 162 
spatial resolution data, available hourly and monthly. The IMERG-Final dataset provides half-hourly 163 
precipitation at a 0.1° × 0.1° resolution, covering latitudes from 60°S to 60°N (Huffman, Bolvin et al. 2020). 164 
It integrates satellite-based passive microwave and infrared sensor data, with regionalization and bias 165 
correction applied using GPCC gauge records (Huffman, Bolvin et al. 2020). AORC offers gridded 166 
meteorological data across the continental U.S. and Alaska, with a 30-arc-second (~800 meters) resolution 167 
and hourly temporal resolution (Fall, Kitzmiller et al. 2023). It compiles weather information for land-168 
surface, snow, and hydrologic models and serves as the forcing data for calibrating the NWM version 2.1 169 
model (Hong, Xuan Do et al. 2022). In this study we use the AORC precipitation while using other 170 
atmospheric variables of NLDAS 2, since it used as forcing to derive NWM. Both the IMERG AORC 171 
precipitation are mapped to a 0.125° resolution through bilinear interpolation for compatibility with 172 
NLDAS-2 (Xia, Mitchell et al. 2012) to match the NLDAS 2 resolution. 173 

2.2.2 Atmospheric Forcing, Soil and Vegetation Parameters 174 
We used the NLDAS-2 forcing dataset to drive the Noah-MP model. This dataset includes hourly data on 175 
downward shortwave and longwave radiation, temperature, specific humidity, surface air pressure, and 176 
wind speed, with a spatial resolution of 0.125° over the CONUS region. The NLDAS-2 forcing dataset has 177 
been extensively used to drive LSMs in our previous modeling studies (Niu, Fang et al. 2020, Agnihotri, 178 
Behrangi et al. 2023, Farmani, Behrangi et al. 2024). This study used the State Soil Geographic 179 
(STATSGO) U.S soil map and USGS 24-category vegetation classification datasets, aggregated to match 180 
the NLDAS-2 resolution, ensuring consistent soil and vegetation parameterization. Noah-MP model's 181 
lookup tables  (Niu, Fang et al. 2020) assigned the appropriate parameters for soil and vegetation categories. 182 

2.2.3 Streamflow Data for Evaluation and Comparison 183 

To evaluate the model's performance in modeling BaseFlow Index (BFI) and predicting streamflow, we 184 
used observed daily streamflow data from the US Geological Survey (USGS) for 390 gauges across the 185 
southwestern United States (Figure 2). The selected gages cover wide ranges of drainage area, varying from 186 
10.51 km2 (Kings Cyn CK NR Carson City, NV - 10311100) to 638432.06 km2 (Colorado R Blw Yuma 187 
Main Canal WW at Yuma, AZ - 09521100) 188 
 189 
We also used NWM (v2.1) retrospective (https://noaa-nwm-retrospective-2-1-190 
pds.s3.amazonaws.com/index.html) daily streamflow data for comparison and to evaluate potential 191 
improvements. NWM integrates the WRF-Hydro model to simulate the water cycle and deliver streamflow 192 
predictions for 2.7 million reaches across the contiguous United States (Salas, Somos‐Valenzuela et al. 193 
2017, Cosgrove, Gochis et al. 2024). It combines numerical weather forecasting models with Noah-MP to 194 
generate runoff on a 1-km grid, employing Muskingum–Cunge channel routing techniques to predict 195 
streamflow for NHDPlus stream reaches (Shastry, Egbert et al. 2019). 196 
 197 
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2.2.4 SoilGrids250m Dataset 198 
We used the SoilGrids250m dataset to derive the saturated hydraulic conductivity and soil water retention 199 
curve parameters using the Pedo-Transfer function (PTF) proposed by Wösten et al. (1999) (see Appendix 200 
A). The SoilGrids250m product, developed by ISRIC (Poggio, de Sousa et al. 2021), represents a significant 201 
advancement over the previous machine learning-generated SoilGrids1km dataset (Hengl, de Jesus et al. 202 
2014). It provides global estimates of various soil characteristics, including the percentages of clay, sand, 203 
and silt, as well as organic carbon content and soil bulk density. Compared to the SoilGrids1km dataset, 204 
SoilGrids250m provides improved accuracy for soil texture and other characteristics (Oloruntoba, Kollet 205 
et al. 2024). 206 
 207 

2.2.5 Bedrock Depth 208 
This study utilizes the dataset produced by Shangguan et al. (2017) which presents a comprehensive 209 
framework for estimating the global depth to bedrock (DTB). This dataset integrates observations from 210 
approximately 1.3 million borehole records and 130,000 soil profile locations enhanced with pseudo-211 
observations to improve global coverage (Shangguan, Hengl et al. 2017). Leveraging a diverse array of 212 
covariates, including DEM-based hydrological indices, lithologic maps, and MODIS satellite products, the 213 
authors employed machine learning techniques such as Random Forest and Gradient Boosting to predict 214 
DTB at a fine resolution of 250 meters.  215 
 216 

2.2.6 Noah-MP with Advanced Soil Hydrology 217 
In this research, Noah-Multiparameterization Land Surface Model (Noah-MP LSM)  (Niu, Yang et al. 218 
2011) was chosen for its widespread use in the Weather Research and Forecasting (WRF) model 219 
(Skamarock, Klemp et al. 2008), the Unified Forecast System (UFS) (Moon, Knutson et al. 2022), and 220 
NWM. These models are vital for weather, short-term climate projections, and streamflow forecasting. 221 
Noah-MP distinguishes between bare and vegetated areas, ensuring accurate calculations of surface energy 222 
and fluxes (Agnihotri, Behrangi et al. 2023). 223 
 224 
The Noah-MP version employed in this research incorporates several significant features and advancements 225 
to enhance the simulation of hydrological and ecological processes. These include advanced plant 226 
hydraulics, improved soil hydrology with explicit representation of soil water movement, the explicit 227 
prediction of plant water storage, integration of a mixed-form Richards' equation for simulating surface 228 
ponding and preferential flow, and the consideration of variability in infiltration capacity due to soil 229 
macropores.. It explicitly predicts plant water storage, which is computed as the residual of root water 230 
uptake driven by the hydraulic gradient between the soil and roots and transpiration (Niu, Fang et al. 2020). 231 
Furthermore, it integrates a mixed-form Richards' equation that simulates surface ponding, infiltration, and 232 
preferential flow (Niu, Fang et al. 2024). The soil hydrology simulates the movement of water from the 233 
bedrock to the vegetation canopy to fulfill plant transpiration requirements. It additionally considers the 234 
variability of infiltration capacity by considering fractional area of preferential flow pathways created by 235 
soil macropores in the fields. Table 1 details consistent optional schemes across experiments, including 236 
surface layer exchange, radiation transfer, phase changes, and runoff scheme. 237 
 238 

2.2.6.1 Optional Soil Hydraulics Schemes  239 

The version of Noah-MP used in the current study offers optional hydraulic models using Van Genuchten-240 
Mualem (VGM) and Brooks-Corey with Clapp-Hornberger (BC/CH) parameters. Generally, the Van 241 
Genuchten water retention curve produces less suction than BC/CH in the drier end of soil moisture (see 242 



 

7 
 

Niu et al., 2020) A polynomial function is applied to smooth the BC/CH water retention curve for better 243 
convergence near saturation (Bisht, Riley et al. 2018) 244 
 245 
2.2.6.2 Representing Preferential Flow  246 
The enhanced Noah-MP incorporates a dual-permeability model (DPM) to represent preferential flow, 247 
partitioning the grid into macropore and matrix flow domains. This approach is based on the work of 248 
Simunek and van Genuchten (2008) and Gerke and van Genuchten (1993a, 1996). This model accounts for 249 
subgrid variability in infiltration capacity and water transfer between the two subgrid domains, including 250 

“lateral infiltration” and lateral movement of surface ponded water. The overall water content (θ [!
!

!!]) and 251 

vertical water flux (q [!
"
]) for a grid cell are calculated using the expressions θ =Fa θa + (1−Fa) θi and q = Fa 252 

qa + (1−Fa) qi. Here, F denote the fraction of soil grid and the subscripts a and i refer to macropore and 253 
micropore domains, respectively. This method also applies to other water fluxes, such as soil evaporation 254 
(Esoil) and groundwater recharge. 255 
 256 
2.2.6.3 The Mixed-Form Richards’ Equation  257 

Most LSMs utilize a mass-based (θ-based) Richards' Equation (RE) for unsaturated soils, as noted by Chen 258 
& Dudhia (2001) and Oleson et al. (2010). However, this approach often struggles to accurately describes 259 
saturated conditions such as surface ponding and groundwater dynamics. In contrast, the current Noah-MP 260 
incorporates the method developed by Celia et al. (1990), which involves solving the mass-pressure (θ-h) 261 
mixed-form RE. This solver can compute the pressure head (h, m), continuously across saturated and 262 
unsaturated zones, while conserving mass (θ) and employs an adaptive time-stepping scheme to enhance 263 
accuracy. All the model experiments in this study benefit from using Mixed-Form Richard’s equation solver 264 
(Niu, Fang et al. 2024). 265 

 266 

2.2.6.4 Surface Ponding 267 

Surface ponding arises when the pressure head of the surface layer exceeds the air entry pressure. As a 268 
result, the upper boundary condition (BC) transitions from flux BC to head BC. Infiltration-excess runoff 269 
occurs when the depth of surface ponding(Htop, mm), surpasses a specified threshold (Htop,max, mm). This 270 
situation leads to the connection and runoff of water at local depressions within a grid cell. The model's 271 
vertical domain extends to the depth of the bedrock, with a lower boundary condition of zero-flux. 272 
Groundwater discharge is simulated using the TOPMODEL concept, which is based on the water table 273 
depth determined by interpolating the model predicted pressure head at specified layers. 274 

 275 

Table 1 Noah-MP Options used in this study. 276 

Process  Options Schemes 
Dynamic vegetation DVEG = 2 Dynamic vegetation 
Canopy stomatal resistance OPT_CRS = 1 Ball-Berry type 
Moisture factor for stomatal resistance OPT_BTR = 1 Plant water stress 
Runoff and groundwater OPT_RUN = 1 TOPMODEL with groundwater 
Surface layer exchange coefficient OPT_SFC = 1 Monin-Obukhov similarity theory (MOST) 
Radiation transfer OPT_RAD = 1 Modified two-stream 

Ground snow surface albedo OPT_ALB = 3 Two-stream radiation scheme (Wang, He et al. 
2022) 

Precipitation partitioning  OPT_SNF = 5 Wet bulb temperature (Wang, Broxton et al. 
2019) 
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2.2.7 Model Experiments 277 

2.2.7.1 General attributes 278 
We conducted 10 experiments using an updated Noah-MP model, focusing on three categories related to 279 
baseflow uncertainties in 1) representations of hydrological processes, 2) soil water retention curve 280 
parameters (hydraulic parameters), and 3) precipitation datasets. All 10 experiments were driven by the 281 
same atmospheric variables from NLDAS-2 forcing data, downward shortwave and longwave radiation, 282 
temperature, specific humidity, surface air pressure, and wind speed, at 0.125° resolution, with initial 283 
conditions from model spin-up runs from 1980 – 2019 for three iterations. The first two iterations starting 284 
from soil moisture at 0.3 m³/m³ and soil temperature at 287K served as model spin-up (80 years). All the 285 
experiments in the hydrological processes and hydraulic parameters scenarios were driven by the NLDAS-286 
2 precipitation data. For the precipitation datasets scenarios, the experiments were driven by the by the three 287 
precipitation datasets: IMERG, AORC, and NLDAS-2, all with other atmospheric variables from NLDAS-288 
2, with 11 iterations (10 as model spin-up) from 2014 – 2019. 289 
Scenario parameters followed Niu et al. (2020), with adjustments for the Moderate Resolution Imaging 290 
Spectroradiometer (MODIS) leaf area index data. No calibration was done for dual-domain schemes related 291 
to preferential flow and ponding depth (Šimůnek and van Genuchten 2008). Experiments used a uniform 292 
soil layer thickness setup with varying number of vertical layers (5 – 15 layers), depending on the bedrock 293 
depth with a maximum depth of 49.0 meters in this region (Pelletier et al., 2016), and a minimum depth of 294 
4.0 meters. 295 
 296 
Table 2. Model Experiments configurations 297 

Category 
Experiment 

name 
Soil Moisture 

Solver 

Ponding 
depth 
(mm) 

Soil Hydraulics Forcing 
Soil Water Retention 

Characteristics Parameters 

Hydrological 
Process 

CH Mixed Form RE 50 
Brooks-Corey/Clapp-

Hornberger 

NLDAS-2 Noah-MP Table 
VGM Mixed Form RE 50 Van-Genuchten 

VGM0 Mixed Form RE 0 Van-Genuchten 

DPM 
Dual Permeability, 

Mixed Form RE 
50 Van-Genuchten 

Hydraulic 
Parameters 

ML Mixed Form RE 50 

Van-Genuchten NLDAS-2 

ML-Based (Gupta et al., 2022) 
PTF50 Mixed Form RE 50 PFT (Wösten et al., 1999) 

DPMPTF0 
Dual Permeability, 

Mixed Form RE 
0 PFT (Wösten et al., 1999) 

Precipitation 

NLDAS 

Mixed Form RE 
  

50 
  

Van-Genuchten 

NLDAS-2 

Noah-MP Table 
  

IMERG 
NLDAS-

2, IMERG 

AORC 
NLDAS-
2, AORC 

 298 

2.2.7.2 Experiments Developed in this Study  299 
The hydrological processes scenario consists of four experiments to evaluate the impact of different 300 
representations of hydrological processes (or models) on baseflow generation and BFI (Table 2). These 301 
models vary by soil hydraulic schemes (Brooks-Corey with Clapp-Hornberger parameters and Van-302 
Genuchten), ponding depth threshold (50 mm and zero), and model physics (single vs. dual permeability) 303 

Lower boundary condition for soil  
temperature OPT_TBOT = 2 2-m air temperature climatology at 8m 

Snow/soil temperature time scheme OPT_STC = 1 Semi-implicit 
Surface evaporation resistance OPT_RSF = 1 Sakaguchi and Zeng (2009) 
Root profile OPT_ROOT = 1 Dynamic root (Niu, Fang et al. 2020) 
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(see Niu et al., 2024 for details). To assess the impacts of soil hydraulic properties on BFI, we conducted 304 
two experiments using a 50 mm ponding threshold with a single domain scheme: one with the Brooks-305 
Corey and Clapp-Hornberger (CH) parameters, whereas the other with Van-Genuchten (VGM). This 306 
comparison allows us to isolate the effect of different soil retention characteristics on baseflow generation. 307 
 308 
A third experiment incorporated the Dual-Permeability Model (DPM) within the VGM framework, 309 
maintaining the 50 mm ponding threshold (referred to as DPM). This setup examines the effects of 310 
macropore flow and preferential pathways on baseflow, helping us understand how soil structure influences 311 
hydrological responses. The fourth experiment explored surface ponding's role in baseflow generation by 312 
setting the ponding threshold (Htop,max) to 0 mm in a VGM framework (VGM0). By eliminating the potential 313 
for surface ponding, we aimed to assess its impact on infiltration and subsequent baseflow processes. 314 
 315 
It should be noted that we first evaluated the BFI from hydrological processes scenarios. based on their 316 
performance we selected the scenario which has the closest BFI pattern to USGS as basic configuration for 317 
hydraulic parameters and precipitation forcing experiments. Also, macropore volume fraction was 318 
determined using modeled soil organic matter (SOM) from Noah-MP with a microbial-enzyme model 319 
(Zhang, Niu et al. 2014). The macropore volume fraction ranged from 0.05 to 0.15. 320 
 321 
For hydraulic parameters scenarios, we used the VGM configuration with two datasets instead of the Noah-322 
MP lookup table. The first dataset used machine learning-generated parameters (ML scenario) by Gupta et 323 
al. (2022), and the second used parameters derived from the Pedo-Transfer Function (PTF) and 324 
SoilGrids250 data (PTF50 scenario). The third scenario employed the DPM framework with a zero ponding 325 
threshold and PTF-generated soil water retention curve parameters (Table 2). To evaluate the effect of 326 
precipitation forcing datasets, three VGM configuration experiments were conducted with AORC, IMERG, 327 
and NLDAS-2 datasets (Table 2), covering 2014-2019 due to limitation in the length of IMERG 328 
precipitation and our storage space.  329 
 330 

2.2.8 RAPID Routing Model 331 

The Routing Application for Parallel computation of Discharge (RAPID, David, Maidment et al. (2011)) 332 
used a matrix formulation of the Muskingum method to calculate discharge across river networks with 333 
numerous river reaches. The National Oceanic and Atmospheric Administration (NOAA) National Water 334 
Model incorporated RAPID as an alternative river routing model, and it served as a component of the 335 
Streamflow Prediction tool (Snow, Christensen et al. 2016). 336 
For this study, we used daily-mean gridded lateral inflow, specifically surface  and subsurface runoff 337 
outputs from the final loop of the 1980–2019 Noah-MP simulations, as input for the RAPID model to 338 
simulate daily discharge within the river network. We developed a consistent vector-based river network 339 
for the study region (Figure 2a) using the NHDPlus V2 dataset, which was previously applied to create the 340 
river network for the entire Mississippi River Basin (MRB) (Tavakoly, Snow et al. 2017, Tavakoly, 341 
Gutenson et al. 2021). To ensure consistency in the streamflow results, we also applied the same parameters 342 
across all RAPID simulations. 343 

2.3 BFI Calculation 344 
Streamflow consists of two main components: quick flow and baseflow. Quick flow, also known as storm 345 
flow, results from faster streamflow pathways such as direct precipitation and surface runoff due to 346 
infiltration excess and saturation overland flow (Hall 1968, van Dijk 2010). In contrast, baseflow is derived 347 
from groundwater, which is the same as subsurface runoff in Noah-MP, and delayed sources like snowmelt, 348 
ensuring water availability during dry periods (Hall 1968, van Dijk 2010).  349 
 350 
While chemical tracers can estimate baseflow (Genereux 1998), they are labor-intensive and costly (Xie, 351 
Liu et al. 2020). Therefore, non-tracer methods like graphic methods (Sloto and Crouse 1996, Arnold and 352 
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Allen 1999) and digital filtering techniques (Chapman 1991, Furey and Gupta 2001, Huyck, Pauwels et al. 353 
2005, Tularam and Ilahee 2008, van Dijk 2010) have been developed to estimate baseflow from streamflow 354 
data without extensive fieldwork (Kissel and Schmalz 2020). Many studies have compared these methods, 355 
showing comparable performance (de Roo, Beck et al. 2015, Kissel and Schmalz 2020, Chen and Ruan 356 
2023). 357 
 358 
Selection of methods for calculating baseflow has a significant impact on the resulting values. Given that 359 
the ground truth values of BFI are unknown, the method selection process involves a degree of subjectivity 360 
(Beck, van Dijk et al. 2013, de Roo, Beck et al. 2015). Comparative studies across various catchments often 361 
reveal strong correlations between different techniques for determining BFI (Chapman 1999, Eckhardt 362 
2008, de Roo, Beck et al. 2015, Kissel and Schmalz 2020). Eckhardt (2008) calculated BFI values for 65 363 
catchments using seven different methods and observed coefficients of determination (R²) of 0.85 or higher, 364 
indicating strong agreement among the techniques. Regardless of the approach used for baseflow separation 365 
and BFI computation, the results tend to be highly correlated and consistent (Eckhardt 2008, Beck, van Dijk 366 
et al. 2013, de Roo, Beck et al. 2015).  367 
 368 
In this study we used the Van Dijk (2010) baseflow separation method, based on a linear reservoir model, 369 
to compute baseflow and BFI for each catchment. According to Van Dijk (2010), the linear reservoir model 370 
performs as well as the two-parameter model but with the advantage of using a single parameter, thereby 371 
reducing parameter variability. Chapman (1999) also supports the use of this model, highlighting its 372 
efficiency in baseflow estimation. We aim to deepen our understanding of baseflow generation by applying 373 
a consistent separation method across both benchmark data and various scenarios, ensuring uniformity in 374 
our analysis. Hence, the uncertainty of selecting the separation method does not affect the purpose of this 375 
study, which uses BFI to understand and improve baseflow generation processes. However, the Van Dijk 376 
(2010) separation model which describes falling limb of hydrograph as an exponential decay factor of time, 377 
could capture the exponential factor in TOPMODEL with groundwater option in Noah-MP. As described 378 
in Van Dijk (2010) and Beck et al (2013), single BFI and k values were calculated from the Q record for 379 
each catchment. For linear reservoir model, relation between the streamflow and reservoir storage can 380 
described as: 381 

𝑄(𝑡) = 	𝑘𝑆(𝑡)                                                     (1) 
 382 
Where 𝑄 (mm d-1) is the streamflow, 𝑘 (d-1) is recession coefficient and S (mm) is reservoir storage.  383 
Also, from the continuity equation we have: 384 
 385 

𝑑𝑆
𝑑𝑡 = 	−𝑄(𝑡) 

                                                    (2) 

Let’s take a derivation from equation (1): 386 
 387 

𝑑𝑄(𝑡)
𝑑𝑡 = 	𝑘

𝑆(𝑡)
𝑑𝑡  

                                                  (3) 

Now replace equation (3) in equation (2) and solve it: 388 
 389 

𝑑𝑄(𝑡)
𝑘	𝑑𝑡 = 	−𝑄(𝑡) 

𝑄(𝑡) = 𝑄	(𝑡 − 1)	exp	(−𝑘)	 
 

                    (4)       
 
                    (5)                           

Equation (5) describes the falling limb of hydrographs, and the 𝑘 for a specific catchment was calculated as 390 
follows: 391 
 392 

𝑘 = −	ln	(
𝑄(𝑡)
𝑄∗

)	 
                (6) 
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The parameter 𝑘 can be estimated by fitting equation (6) to the data pairs of 𝑄(𝑡) (mm d-1) and 𝑄∗ (mm d-1), 393 
derived from 𝑄(𝑡) and 𝑄(𝑡 − 1), as outlined by van Dijk (2010) and Beck et al(2013).  394 
 395 

𝑄 = exp	(ln	(𝑄(𝑡 = 1,2, . . , 𝑁))88888888888888888888888888)	 
 

𝑄∗ = exp	(ln	(𝑄(𝑡 = 0,1, . . , 𝑁 − 1))88888888888888888888888888888888)	 

                (7) 
           
                (8) 

 396 
Where N denotes the Nth observation in data pairs. To create the data pairs, we first removed zero values and 397 
days showing an increase from the previous day. Additionally, the five days following these instances were 398 
excluded to account for quick flow (Beck, van Dijk et al., 2013; de Roo, Beck et al., 2015). The multi-start 399 
downhill simplex algorithm was employed, with Root Mean Square Error (RMSE) as the fitting criterion, to 400 
find the optimum fitting parameter 𝑘. 401 
 402 

𝑅𝑀𝑆𝐸 = =∑ ?𝑄"#$ − 	𝑄@
%&

'	)	*	

𝑁  
                                                     
                 (9) 

where 𝑄ABC is predicted streamflow using Eq. (5). The 𝑘 value obtained from the calculations was utilized to 403 
separate  the 𝑄 record into baseflow and quick flow, employing a combination of forward- and backward-404 
recursive digital filters (van Dijk 2010) for each day. Finally, the ratio of total baseflow to total streamflow 405 
estimates the BFI. To validate our implementation of the baseflow separation method proposed by Van Dijk 406 
(2010), we applied the method to a station from the Global Runoff Data Center (GRDC) and compared our 407 
results (Figure S1) with those obtained by Beck et al. (2013), who also implemented the method. Our 408 
estimation of baseflow and BFI agrees closely with Beck et al. (2013). 409 

3 Results 410 

3.1 BFI 411 

3.1.1 The Effects of Representations of Hydrological Processes  412 
The BFI values derived from the 40-year streamflow data at the USGS gauges displays a wide range from 413 
0 to 0.95 with a median of 0.78 (Figures 3a and 4a), consistent with the those of Beck et al. (2013) and 414 
Beck et al. (2015). Lower BFI values appear in the drier southwestern coastal and southern regions of the 415 
domain, whereas higher values are in the wetter northwestern Rocky Mountains. The study domain shows 416 
a gradient from the higher BFIs in the northern wetter climates to lower BFI values in the southern dry 417 
climates, reflecting the effects of the varying hydroclimate conditions on soil formation processes through 418 
weathering and sediment transport and deposition (Figure 2). The BFI pattern over our study region was 419 
close to the aridity index pattern (Figure 2b), where areas with a higher aridity index displayed lower BFI, 420 
and those with a lower index had higher BFI. Additionally, the observed BFI gradient across the study 421 
domain may have been related to variations in bedrock depth (Figure 2c). In the Rocky Mountains, the 422 
presence of shallower bedrock likely contributed to thinner soils, which could facilitate baseflow 423 
generation. Furthermore, the steeper terrain in these regions promoted faster water movement through the 424 
soil, further enhancing baseflow generation (Figure 2a).  425 
 426 
NWM overestimated BFI across most gauges, including both low- and high-BFI regions, with a median 427 
value of 0.88 (Figure 3b). The BFI boxplot of the NWM indicates that more gauges exhibit higher BFIs 428 
and a narrower range of values compared to the USGS (Figure 4a). The CH experiment, with a median BFI 429 
of 0.82, also overestimated BFI, more obviously in areas with low BFIs (Figure 3c and 4a). Similar to 430 
NWM’s distribution, CH also showed a narrower range when compared with that of the USGS data (Figure 431 
4b). Additionally, CH generated lower BFI values than the USGS in the high baseflow regions. NWM uses 432 
the Brooks-Corey hydraulics as did the CH experiment but with optimized hydraulic parameters.    433 
 434 
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VGM produced a median BFI of 0.76 (Figure 4a) and a wider BFI range than CH (Figure 4), closer to the 435 
distribution of the USGS, especially in the southern low BFI regions (Figure 3). VGM performed better 436 
than CH in low BFI areas (Figure 3), and so did BFI range and distribution from VGM compared with to 437 
those from the USGS (Figures 4a and 4b). However, the VGM slightly underestimated BFI in high-BFI 438 
regions over the Rockies (Figure 4b), likely because Noah-MP did not account for lateral flow caused by 439 
the steep topography in this region. By excluding lateral flow, the model underrepresented water 440 
redistribution across slopes, which reduced infiltration and limited groundwater recharge. 441 
 442 
Compared with VGM, DPM produced a median BFI of 0.81 and a much narrower range of BFI distribution 443 
(Figure 3e). It significantly overestimated BFI in the southern low-BFI areas but captured the high BFI 444 
values over the Rockies slightly better (Figures 4a and 4b). The spatial distribution of organic matter may 445 
be not representative enough, because both VGM and DPM used the VGM hydraulic parameters and the 446 
same ponding depth, and the only difference was the macropore volume fraction represented by soil organic 447 
matter in DPM. 448 
  449 
The inclusion of ponding process significantly impacted baseflow generation. VGM0 produced a lower 450 
median BFI of 0.65 compared to VGM with a 50 mm ponding depth threshold (Figures 3d and 3f). Although 451 
VGM0 produced a similar range of BFI compared to the USGS, it significantly underestimated high BFI, 452 
shown by the low density of BFI values above 0.7 (Figure 4b). This indicates that a model without 453 
consideration of surface ponding (allowing all infiltration-excessive water to run off) would underestimate 454 
BFI, and a spatially constant threshold is not representative (should include spatially-variable 455 
microtopography information). 456 
 457 

 
Figure 3. BFI at 390 gauges across the southwestern region (a) derived from the USGS streamflow as 
well as those from the model experiments (b) NWM; (c) CH; (d) VGM; (e) DPM; and (f) VGM0. 

 

Figure 4(a) Boxplot (b) and Distribution of BFI for USGS, NWM, and different scenarios.  

 458 
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3.1.2 The Effects of Hydraulic Parameters 459 
To analyze the impact of selecting parameters for soil water retention curve, we used VGM, which matches 460 
the closest the USGS benchmark. We applied the VGM configuration with different datasets for the 461 
hydraulic parameters scenario. 462 
 463 
All experiments with hydraulic parameters generally captured the pattern seen in the USGS data. They 464 
showed low BFI values in the southwestern coastal regions and high BFI values in the northeast Rockies 465 
(Figures 5). Using the ML-derived parameter dataset increased BFI, with a median of 0.78, especially in 466 
the southwestern coastal areas compared to VGM with the parameters from the look-up table. BFI also 467 
increased at most gauges in the Colorado State, where the BFI values from VGM are lower than the USGS 468 
data (Figures 5a, and b). However, the ML-based parameters degraded the simulation in the southern 469 
California and Arizona compared to VGM. Overall, the ML-based parameters result in a narrower range of 470 
BFI distribution by increasing BFI at most gauges (Figure 6a), with the reduced density of BFI below 0.1 471 
(Figure 6b) and increased density of BFI values above 0.7 compared to VGM. VGM performed better than 472 
ML in capturing the higher BFI in the northeast (Figure 6b). The difference between ML and VGM could 473 
be related to the generally larger saturated hydraulic conductivity (Figure S2). 474 
 475 
PFT50, soil water retention curve parameters derived from PFT (Wösten, Lilly et al. 1999), produced a 476 
median BFI of 0.78 with a pattern similar to that of ML, but with a smaller increase in California. PTF50 477 
also increased BFI, particularly in the southwestern regions, compared to VGM. This is similar to ML but 478 
with slightly better performance and a wider range of BFI (Figure 6a). Like ML, PTF50 increases BFI in 479 
central regions (Figures 5a, and b). However, VGM again performed better than PTF50 in capturing the 480 
highest BFI in the northeast regions (Figure 6b).  481 
 482 
PTFDPM0 uses the dual permeability model with the PTF-derived parameters but with the ponding 483 
threshold equals zero to produce model surface runoff (Table 2). PTFDPM0, with a median BFI of 0.74, 484 
shows a pattern similar to VGM, PTF50, and ML, predicting slightly higher BFI values for high BFI regions 485 
(Figure 5d). It slightly captures the high BFI from the USGS gauges (Figure 6b), thereby a little enhancing 486 
the VGM's ability to predict the highest BFI, though it still underestimates the high BFI regions. Overall, 487 
using different hydraulic parameters does not significantly affect the BFI, although it slightly shifts the BFI 488 
toward higher values. However, the hydraulic parameters may influence the timing and peak value of the 489 
streamflow, which will be analyzed in Section 3.2.    490 
 491 
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Figure 5 BFI at 390 locations across the southwestern region for the hydraulic parameters scenarios.  
Panels show the following: (a) USGS; (b) VGM; (c) ML; (d) PTF50; and (e) PTFDPM0. 

 492 

 493 

Figure 6 Boxplot (a) and Distribution of BFI for USGS, VGM, and hydraulic parameter scenarios.  494 
 495 

3.1.3 The Effects of Precipitation Forcing 496 

Similar to the hydraulic parameter scenarios, we used the VGM model with three precipitation products. 497 
Due to limitations in the length of IMERG precipitation, these experiments were run for the period 2014 – 498 
2019.  499 
IMERG, using the IMERG precipitation, produces a BFI median of 0.74, with lower BFIs at the stations in 500 
the coastal regions of the middle California River Basin, reducing the high biases by NLDAS (Figures 3a, 501 
7a, c). IMERG effectively captured the low BFIs that NLDAS and VGM fail. Also, IMERG produced a 502 
density closer to USGS for BFI values lower than 0.2. Additionally, IMERG increases BFIs for some 503 
northeastern stations with high BFIs (red square in Figure 8b), resulting in a wider range (Figure 8a). 504 
 505 
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AORC, using the AORC precipitation, also shows a BFI spatial pattern similar to NLDAS (Figure 1d). 506 
However, it predicts higher BFI values for some stations, leading to a higher BFI median of 0.77 compared 507 
to NLDAS and IMERG. This is reflected in both the boxplot and distribution plot (Figure 2a, b), where 508 
AORC had the highest BFI median among the scenarios. The BFI distribution for AORC (Figure 8b) 509 
showed a narrower range. Among all the forcing scenarios, AORC performed the worst due to the 510 
overestimated BFI in low-BFI regions. In contrast, IMERG performed the best by accurately capturing the 511 
low BFI regions along the coast, where NLDAS and VGM have neglected. 512 
 513 

 
Figure 7. BFI at 390 locations across the southwestern region for the forcing scenarios. Panels show the 
following: (a) USGS; (b) NLDAS; (c) IMERG; and (d) AORC. The BFI for USGS is computed for 2014-
2019 to be consistent with forcing scenarios. 

 

Figure 8.BFI Boxplot (a) and (b) distribution of BFIs for USGS, and, and forcing scenarios. The BFI 
for USGS and VGM are computed for 2014-2019 to be consistent with forcing scenarios. 

 514 

3.2 Evaluation of Streamflow Prediction Skill with KGE and Low Flow RMSE 515 
We also evaluated the model performance in simulating streamflow using the median KGE and low flow 516 
RMSE for the various model configurations. Among all the physical process and hydraulic parameters 517 
experiments, ML showed the best performance with the highest median KGE of 0.29, the lowest low flow 518 
RMSE of 1.57, and the most stations of positive KGE values of 272 (Table 3). VGM and PTF50 also 519 
performed well, each with a median KGE of 0.28 and a low flow RMSE of 1.62, indicating their reliability 520 
in simulating hydrological processes. ML also has the smallest KGE range (Figure 9a), with its distribution 521 
skewed toward higher KGE values (Figure 9b), making it a robust option across different regions. 522 
 523 
The PTFDPM0 scenario exhibited the poorest performance with the lowest median KGE of 0.06, the 524 
highest low flow RMSE of 2.62, and the fewest stations with positive KGE, despite occasionally capturing 525 
the highest KGE among all scenarios (Figure 9b). This suggests that while PTFDPM0 can perform well in 526 
some instances, its overall reliability is significantly lower than other configurations. 527 
 528 



 

16 
 

The most negative KGE stations are located in the Great Basin, Upper Colorado, and Rio Grande HUC2 529 
regions (Figure S3), which correspond to high BFI regions. In contrast, the most positive KGE stations are 530 
found in the California River Basin (Figure S3). Notably, some stations in the Rio Grande and Upper 531 
Colorado regions have negative KGE values resulting from NWM but positive KGE from ML (Figure S3a, 532 
b). This further highlights the improved performance of the ML configuration, especially in regions where 533 
other configurations struggle.   534 
 535 
Table 3 Median KGE, Number of stations with positive KGE, and low flow RMSE for scenarios covering 536 
1980-2019 537 

Scenario Median KGE Number of stations with positive KGE Low flow RMSE 
NWM 0.16 221 2.35 

CH 0.17 227 2.07 
VGM 0.28 257 1.62 
DPM 0.21 229 1.77 

VGM0 0.13 211 2.50 
ML 0.29 272 1.57 

PTF50 0.28 257 1.62 
PTFDPM0 0.06 200 2.62 

 538 

 539 
Figure 9. Boxplot (a) and Distribution of KGE for NWM, and physical process and hydraulic parameter 540 
scenarios. 541 
 542 
Regarding the precipitation forcing scenarios, IMERG performed the best with the highest median KGE 543 
(0.30), the largest number of positive KGE stations (309), and the lowest low flow RMSE (0.99), though 544 
over a shorter length of period (Table 4). Or at least, using IMERG precipitation data can enhance KGE 545 
and low flow predictions. Integrating IMERG data with the ML configuration, ML_IMERG, could further 546 
improve baseflow predictions, combining the strengths of both approaches for more accurate hydrological 547 
modeling (Figure S4, S5). 548 
 549 
Table 4 Median KGE, Number of stations with positive KGE, and low flow RMSE for the scenario covering 550 
2014-2019 551 

Scenario Median KGE Number of stations with positive KGE Low flow RMSE 
AORC 0.13 221 1.63 

IMERG 0.30 309 0.99 
NLDAS 0.19 262 1.13 

We also computed KGE improvement (%) to evaluate the enhancement of different configurations upon 552 
NWM for 1980 - 2019 (Table 5). For each gauge station, we calculate the improvement in KGE as a 553 
percentage increase relative to the NWM. This is computed using the formula: 554 

 𝐾𝐺𝐸D!A =	
EFG#,%HEFG#,&'(		

EFG#,&'(
 for station 𝑖 under scenario 𝑗.  555 

Among all scenarios, ML shows the highest improvement, with a median of 20%. Notably, 294 stations 556 
shows improvements under the ML configuration (Figure 10), making it the most effective in improving 557 
model performance across a wide range of stations, which are scattered throughout the entire region with a 558 
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wide range of soils, vegetation, and climates. There are 79 stations showing an improvement more than 559 
100% over NWM in the southwestern areas, which are characterized by low BFIs. The use of the VG 560 
scheme with ML parameters not only improves low flow predictions in Southern California coast and 561 
Arizona but also significantly enhances KGE at these locations. 562 

VGM and PTF50 scenarios also outperform NWM, each achieving a 15% improvement in median KGE. 563 
Both scenarios show KGE improvements at 282 stations, indicating their robustness in enhancing model 564 
accuracy. These improvements are widely distributed, suggesting that these configurations can be reliable 565 
alternatives to NWM for various hydroclimate conditions. 566 

On the other hand, CH, DPM, VGM0, and PTFDPM0 show negative median KGE improvements, with 567 
more stations experiencing degraded KGE values than improvements. For example, the VGM0 scenario 568 
had a -5% median KGE improvement, with only 91 stations showing improvement, while 299 stations had 569 
degraded KGE values. Similarly, PTFDPM0 showed a -2% median KGE improvement, with 97 stations 570 
improving and 293 degrading, reflecting its overall weaker performance. While ML stands out as the best 571 
performing scenario with significant KGE improvements across the region, VGM and PTF50 also provide 572 
substantial enhancements over the NWM scenario. However, scenarios like VGM0 and PTFDPM0 indicate 573 
the importance of parameter selection and configuration in achieving reliable model performance, as they 574 
show more stations with degraded KGE values than improvements.  575 

Furthermore, the map in Figure 10 illustrated the spatial distribution of KGE improvements, with green 576 
dots representing stations where KGE improved and red dots where KGE degraded. The high concentration 577 
of green dots underscored the effectiveness of VGM scheme with ML parameters, especially in regions 578 
where traditional models like NWM struggled. 579 

Table 5 Median KGE improvement against NWM and number of stations with improved performance for 580 
the scenarios covering 1980-2019. 581 

Scenario Median KGE improvement (%) Number of stations with improved KGE Number of stations with degraded KGE 
CH -9 160 230 

VGM 15 282 108 
DPM -4 173 217 

VGM0 -5 91 299 
ML 20 294 96 

PTF50 15 282 108 
PTFDPM0 -2 97 293 

 
Figure 10 KGE Improvement of ML against NWM. ML was chosen since it outperformed other 
hydrological process and hydraulic parameter scenarios.  

 582 

4 Discussion 583 
Modeling the baseflow generation is challenging, because it essentially involves almost all hydrological 584 
processes including surface infiltration, surface runoff, percolation, groundwater recharge and discharge. 585 
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This study aims to examine how baseflow generation processes in the LSMs affect the accuracy in 586 
streamflow predictions, especially in dry regions. Given the importance of baseflow as the primary source 587 
of streamflow in these areas, we hypothesize that the baseflow generation processes in the large-scale 588 
hydrological models contribute to the inaccuracies in streamflow predictions. By addressing the baseflow 589 
issue directly, we indirectly address the groundwater recharge and discharge problem in LSMs. To address 590 
the baseflow generation processes, we used a version of Noah-MP that is more physically-based, 591 
incorporating the mixed-form Richards equation and a dual domain model, and conducted a series of model 592 
experiments with varying soil hydraulic schemes, soil water retention curve parameters, and precipitation 593 
datasets. The results in this study provided important insights into the hydrological dynamic of the region 594 
and the effectiveness of different modeling approaches.  595 
 596 

4.1 Impacts of Hydrological Processes on Baseflow Generation Mechanism 597 

4.1.1 Soil Water Retention Scheme (CH and VGM Experiments) 598 
 599 
The accuracy of continental-scale hydrological models in predicting streamflow, particularly in dry regions, 600 
hinges on their ability to simulate various water balance components, including surface and subsurface 601 
runoff, soil moisture retention, as well as groundwater recharge and discharge. Runoff, which includes both 602 
surface and subsurface components, plays a critical role in the distribution of water between immediate 603 
streamflow and groundwater recharge, impacting baseflow generation. In dry regions, where precipitation 604 
is sparse, subsurface runoff becomes especially relevant, as it often contributes to baseflow—a key element 605 
in sustaining streamflow during dry periods. Therefore, examining both surface and subsurface runoff 606 
provides insight into how different physical process representations in models affect baseflow estimates. 607 
 608 
Comparing the recharge and subsurface runoff for CH and VG models revealed that the CH model exhibits 609 
higher recharge and greater subsurface runoff than the VG model. Since subsurface runoff is a primary 610 
source of baseflow, the higher values in the CH model led to an overestimation of baseflow (Figures S6 611 
and S7). Moreover, the VG model showed higher surface runoff than the CH model, meaning less water 612 
contributes to baseflow (Figure S8). Therefore, the CH model's tendency to overestimate baseflow and the 613 
Baseflow Index (BFI) can be attributed to its higher simulated recharge and subsurface runoff.  614 
 615 
In low BFI regions, the higher surface runoff produced by VG results in less water infiltrating into the deep 616 
soil and recharging the groundwater (Figures S6 and S8). Hence, VG could generate lower baseflow and 617 
BFI in these regions (Figure 3d). In contrast, CH shows more recharge into groundwater and consequently 618 
higher BFI (Figures S6 and 3c). 619 
 620 

4.1.2 Soil Macropores and Ponding Depth (DPM, VGM, and VGM0 Experiments) 621 
The presence of soil macropores in DPM experiment facilitated rapid infiltration and preferential flow 622 
through the unsaturated zone, groundwater recharge, and thus baseflow (Mohammed, Cey et al. 2021). In 623 
our study, DPM tends to overestimate BFI in low-BFI regions whereas better captured high BFI values. 624 
The presence of macropores increased drainage from the surface to the root zone, potentially reducing 625 
surface layer moisture retention and increasing groundwater recharge and discharge. This enhances 626 
predictions in wet, high-BFI regions but may produce unrealistic results in low-BFI areas. Hence calibration 627 
of the soil macropore volume fraction, which is parameterized as a linear function of soil organic matter, is 628 
critical to achieve more realistic results. Also, the relationship between soil macropore volume fraction and 629 
soil organic matter and other coarse materials (gravels, stones) are worth further investigation. 630 
 631 
Including a ponding threshold, as seen in the VGM scenario with a 50 mm maximum ponding depth, is 632 
crucial for improving baseflow generation, especially in high-BFI regions. This configuration allows more 633 
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water to remain on the surface longer for infiltration before running off, which enhances infiltration and 634 
groundwater recharge and positively impacts baseflow generation (Figure 4d, f).  635 
 636 
A spatially variable ponding threshold should be developed based on the microtopography information. To 637 
simulate surface water in floodplains, a parameter, maximum ponding height, is needed to determine when 638 
infiltration-excess runoff from surface ponding occurs.   To derive this parameter, we will use the standard 639 
deviation of subgrid topography for each grid cell, representing microtopographic features, to fit a non-640 
linear relationship. For evaluation, we will compare floodplain water storage estimates with other sources 641 
such as those derived from routing algorithms. Satellite data should be used. 642 
 643 
 644 

4.2 Impact of Hydraulic Parameters (ML and PTFDPM0) 645 

Saturated hydraulic conductivity and the soil water retention curve parameters affect infiltration rate at the 646 
soil surface, soil moisture movement, recharge into groundwater, and streamflow generation, especially in 647 
timing and peak of the streamflow (ML’s KGE). However, we could not observe significant effect of 648 
hydraulic parameter on generated BFI. Accurate estimation of these parameters can greatly improve 649 
streamflow predictions but is very challenging due to the complex soil texture, structure, and presence of 650 
coarse materials (See (Gupta, Papritz et al. 2022)) . ML-derived parameters showed a 20% improvement 651 
KGE, better matching observed streamflow patterns than traditional lookup tables used by the NWM. 652 
However, the limited geographic and climatic distribution of the training dataset contributing in generating 653 
ML parameters, may affect its generalization, potentially leading to biases in the predicted streamflow.  654 
 655 
The PTFDPM0 scenario, which combines the dual permeability and the removal of ponding depth, showed 656 
a tendency to increase baseflow due to dual permeability while decreasing it because of the absence of a 657 
ponding threshold. This combination results in a reasonably accurate estimation of low BFI but 658 
underestimates high BFI. However, the inclusion of macropores in this setup helps to capture the highest 659 
BFI values, which other scenarios do not achieve (Figure 6b). Moreover, this configuration can reach the 660 
highest KGE at certain stations (Figure 9b). These findings highlight the importance of including both dual 661 
permeability and a ponding depth parameter to model baseflow accurately, particularly in regions with 662 
diverse hydrological conditions (Figure 3, 5, and 9). 663 

4.3 Impact of Precipitation Datasets  664 
The choice of precipitation datasets also significantly impacts the accuracy of baseflow predictions. Our 665 
results indicated that using the IMERG dataset improves the accuracy of BFI predictions in regions where 666 
NLDAS-2 tends to overestimate BFI. The IMERG experiments successfully captured lower BFI values in 667 
regions where the VGM configuration with AORC and NLDAS-2 precipitation overestimate them, 668 
particularly in the coastal regions of the California River Basin. 669 
 670 
To better understand the effect of precipitation on baseflow generation, we analyzed the accumulated 671 
extreme values of precipitation as depicted in Figure S9, S10. Our analysis revealed that the effect of 672 
precipitation on baseflow can be categorized into two distinct groups. Firstly, increased precipitation 673 
intensity, characterized by heavy rainfall, enhances water infiltration into the soil. When the rainfall 674 
intensity is sufficiently high, it penetrates deeper soil layers and percolates into the groundwater. 675 
Consequently, as groundwater recharge intensifies, more baseflow is generated, leading to increased 676 
baseflow in regions marked by blue circles and green dashed lines in Figure S9, and S10. Conversely, when 677 
rainfall becomes excessively intense, it exceeds the soil's infiltration capacity. In such instances, water 678 
generates runoff rather than infiltrating into the soil and groundwater, thereby reducing baseflow in areas 679 
delineated by pink dashed lines (Figure S9, and S10). Overall, the impact of precipitation on baseflow varies 680 
by location and precipitation intensity. As precipitation increases, groundwater recharge and baseflow also 681 
increase; however, upon surpassing a threshold—likely related to soil infiltration capacity—groundwater 682 



 

20 
 

discharge and baseflow should decrease. Thus, there is a need for detailed research on the impact of 683 
precipitation intensity on recharge and baseflow. 684 
 685 

5 Conclusion 686 
This study emphasizes the critical role of baseflow generation processes in streamflow prediction accuracy, 687 
especially in arid regions of the southwestern US. Our modeling results suggest that the streamflow 688 
prediction skill are sensitive to how baseflow generation is represented in terms of model physics, 689 
associated hydraulic parameters, and precipitation forcing data. Using a Noah-MP with enhanced 690 
hydrology, we show that the choice of hydrological processes, hydraulic parameters, and precipitation 691 
datasets significantly affects streamflow prediction accuracy over dry southwestern US. 692 
 693 
The Van-Genuchten hydraulic scheme is more effective than the Brooks-Corey in modeling baseflow and 694 
BFI, particularly in dry regions where the soil is naturally dry, and the BFI is low. This scheme reduced the 695 
BFI overestimation produced by the Brooks-Corey with the CH hydraulic parameters (by the Noah-MP 696 
look-up table) and NWM with calibrated hydraulic parameters by better capturing groundwater recharge 697 
and discharge processes. Additionally, with the machine learning-derived soil water retention curve 698 
parameters, VGM significantly improves the streamflow predictions, offering a better match with the 699 
observed streamflow compared to the look-up table and pedotransfer functions. In general, our finding 700 
implies improving the baseflow in large-scale models like Noah-MP leads to better prediction of streamflow 701 
as observed in VGM configuration. 702 
 703 
The study also highlights the importance of incorporating soil macropores, DPM experiment, and ponding 704 
depth thresholds, VGM and VGM0 experiments, in modeling, as these factors greatly influence infiltration, 705 
percolation, recharge and baseflow generation. A ponding depth greater than zero increases BFI by allowing 706 
more water to infiltrate, especially in wet regions. Additionally, the presence of macropores enhances 707 
drainage from the surface to the root zone, increasing baseflow and BFI. However, the benefits of these 708 
features vary by region. While uncalibrated macropore fraction improve predictions in high-BFI areas, they 709 
may lead to overestimations of baseflow in low-BFI regions. 710 
 711 
Furthermore, the choice of precipitation dataset was shown to be crucial, with the IMERG dataset offering 712 
more accurate baseflow predictions in regions where traditional datasets like NLDAS-2 tended to 713 
overestimate BFI. Indeed, heavy precipitation facilitates the infiltration into deeper soil and groundwater 714 
recharge. This finding suggests that high-resolution precipitation data is essential for improving the 715 
accuracy of streamflow predictions in areas with complex hydrological conditions. 716 
 717 
Overall, the study demonstrates that careful selection of hydrological processes (soil hydraulic schemes), 718 
hydraulic parameters, and precipitation datasets can significantly enhance the performance of hydrologic 719 
models in predicting streamflow, particularly in arid regions. These findings provide valuable insights for 720 
future research and model development, emphasizing the need to optimize model configurations before 721 
calibration to achieve more reliable streamflow predictions. 722 
 723 

Appendix A  724 
The Wösten et al. (1999) proposed Pedo-Transfer function: 725 
𝜃* = 0.7919 + 0.001691 ∗ 𝐶 − 0.29619 ∗ 𝐵 − 	0.000001491 ∗ 𝑆+ + 0.000082	(𝑆𝑀)+ +

0.02427
𝐶 +

0.01113
𝑆 + 0.01472726 

∗ ln(𝑆) − 0.0000733 ∗ (𝑆𝑀) ∗ 𝐶 − 0.000619 ∗ 𝐵 ∗ 𝐶 − 0.001183 ∗ 𝐵 ∗ (𝑆𝑀) − 0.0001664 ∗ 𝑡𝑜𝑝 ∗ 𝑆 727 
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	𝛼 = expB−14.96 + 0.03135 ∗ 𝐶 + 0.0351 ∗ 𝑆 + 0.646 ∗ (𝑆𝑀) + 15.29 ∗ 𝐵 − 0.192 ∗ 𝑡𝑜𝑝 − 4.671 ∗ 𝐵+ − 0.000781 ∗ 𝐶+728 

− 0.00687 ∗ (𝑆𝑀)+ +
0.0449
𝑆𝑀 + 0.0663 ∗ ln(𝑆) + 0.1482 ∗ ln(𝑆𝑀) − 0.04546 ∗ 𝐵 ∗ 𝑆 − 0.4852 ∗ 𝐵 ∗ 𝑆𝑀729 

+ 0.00673 ∗ 𝑡𝑜𝑝𝑝 ∗ 𝐶D 730 

𝐾* = exp B7.75 + 0.352 ∗ 𝑆 + 0.93 ∗ 𝑡𝑜𝑝 − 0.967 ∗ 𝐵+ − 0.000484 ∗ 𝐶+ − 0.000322 ∗ 𝑆+ +
0.001
𝑆 −

0.0748
𝑆𝑀 − 0.643 ∗ ln(𝑆)731 

− 0.01398 ∗ 𝐵 ∗ 𝐶 − 0.1673 ∗ 𝐵 ∗ 𝑆𝑀 + 0.02986 ∗ 𝑡𝑜𝑝 ∗ 𝐶 − 0.03305 ∗ 𝑡𝑜𝑝 ∗ 𝑆D 732 
 733 
𝑛 = 1 + exp B−25.23 − 0.02195 + 0.0074 ∗ 𝑆 − 0.1940 ∗ 𝑆𝑀 + 45.5 ∗ 𝐵 − 7.24 ∗ 𝐵+ − 0.0003658 ∗ 𝐶+ + 0.002885734 

∗ (𝑆𝑀)+ −
12.81
𝐵 −

0.1524
𝑆 −

0.01958
𝑆𝑀 − 0.2876 ln(𝑆) − 0.0709 ln(𝑆𝑀) − 44.6 ln(𝐵) − 0.02264 ∗ 𝐵 ∗ 𝐶735 

+ 0.0896 ∗ 𝐵 ∗ 𝑆𝑀 + 0.00718 ∗ 𝑡𝑜𝑝 ∗ 𝐶D 736 
 737 
𝑙 = 0.0202 + 0.0006193 ∗ 𝐶+ − 0.001136 ∗ (𝑆𝑀)+ − 0.2316 ∗ ln(𝑆𝑀) − 0.03544 ∗ 𝐵 ∗ 𝐶 + 0.00283 ∗ 𝐵 ∗ 𝑆 + 0.0488 ∗ 𝐵738 

∗ 𝑆𝑀 739 
 740 

𝐿 =
10 ∗ exp(𝑙) − 10
exp(𝑙) + 1  741 

 742 
𝜃, = 0 743 
 744 

Where C is Clay, S is Silt, SM is soil organic matter, BD is soil bulk density, and top is 1 for depths < 30 745 
cm, otherwise 0. 746 
 747 

Acknowledgments 748 
 749 
Funding for this project was provided by the National Oceanic and Atmospheric Administration (NOAA), 750 
awarded to the Cooperative Institute for Research on Hydrology (CIROH) through the NOAA Cooperative 751 
Agreement with The University of Alabama, NA22NWS4320003. Also, the research carried out for this 752 
article was supported by the U.S. Army Corps of Engineers, Engineer Research and Development Center, 753 
Coastal Inlets Research Program via Congressionally Directed R&D with the National Oceanic and 754 
Atmospheric Administration’s National Water Center. 755 
The data used in this study are freely available online: 756 
NLDAS-2 data (http://www.emc.ncep.noaa.gov/mmb/nldas/); NASA SMAP soil moisture product 757 
(https://nsidc.org/data/spl3smp_e/versions/6); GPM IMERG-Final product 758 
(https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGHH_06/summary). The Noah-MP code used in this 759 
study has been uploaded to a repository that may be accessed by other researchers 760 
(https://github.com/mfarmani95/NoahMP_Dual). 761 

 762 
 763 
 764 

Reference 765 
Agnihotri, J., A. Behrangi, A. Tavakoly, M. Geheran, M. A. Farmani and G. Y. Niu (2023). "Higher Frozen Soil Permeability 766 
Represented in a Hydrological Model Improves Spring Streamflow Prediction From River Basin to Continental Scales." Water 767 
Resources Research 59(4). 768 
Arnold, J. G. and P. M. Allen (1999). "Automated Methods for Estimating Baseflow and Ground Water Recharge from Streamflow 769 
Records1." JAWRA Journal of the American Water Resources Association 35(2): 411-424. 770 



 

22 
 

Bass, B., S. Rahimi, N. Goldenson, A. Hall, J. Norris and Z. J. Lebow (2023). "Achieving Realistic Runoff in the Western United 771 
States with a Land Surface Model Forced by Dynamically Downscaled Meteorology." Journal of Hydrometeorology 24(2): 269-772 
283. 773 
Batalha, M. S., M. C. Barbosa, B. Faybishenko and M. T. Van Genuchten (2018). "Effect of temporal averaging of meteorological 774 
data on predictions of groundwater recharge." Journal of Hydrology and Hydromechanics 66(2): 143-152. 775 
Beck, H. E., A. I. J. M. van Dijk, D. G. Miralles, R. A. M. de Jeu, L. A. Sampurno Bruijnzeel, T. R. McVicar and J. Schellekens 776 
(2013). "Global patterns in base flow index and recession based on streamflow observations from 3394 catchments." Water 777 
Resources Research 49(12): 7843-7863. 778 
Bisht, G., W. J. Riley, G. E. Hammond and D. M. Lorenzetti (2018). "Development and evaluation of a variably saturated flow 779 
model in the global E3SM Land Model (ELM) version 1.0." Geosci. Model Dev. 11(10): 4085-4102. 780 
Blöschl, G., M. Sivapalan, T. Wagener, A. Viglione and H. Savenije (2013). Runoff Prediction in Ungauged Basins. 781 
Burnash, R. (1995). "The NWS River Forecast System-catchment modeling." 782 
Chapman, T. (1999). "A comparison of algorithms for stream flow recession and baseflow separation." Hydrological Processes 783 
13(5): 701-714. 784 
Chapman, T. G. (1991). "Comment on “Evaluation of automated techniques for base flow and recession analyses” by R. J. Nathan 785 
and T. A. McMahon." Water Resources Research 27(7): 1783-1784. 786 
Chen, S. and X. Ruan (2023). "A hybrid Budyko-type regression framework for estimating baseflow from climate and catchment 787 
attributes." Journal of Hydrology 618. 788 
Cosgrove, B., D. Gochis, T. Flowers, A. Dugger, F. Ogden, T. Graziano, E. Clark, R. Cabell, N. Casiday, Z. Cui, K. Eicher, G. 789 
Fall, X. Feng, K. Fitzgerald, N. Frazier, C. George, R. Gibbs, L. Hernandez, D. Johnson, R. Jones, L. Karsten, H. Kefelegn, D. 790 
Kitzmiller, H. Lee, Y. Liu, H. Mashriqui, D. Mattern, A. McCluskey, J. L. McCreight, R. McDaniel, A. Midekisa, A. Newman, L. 791 
Pan, C. Pham, A. RafieeiNasab, R. Rasmussen, L. Read, M. Rezaeianzadeh, F. Salas, D. Sang, K. Sampson, T. Schneider, Q. Shi, 792 
G. Sood, A. Wood, W. Wu, D. Yates, W. Yu and Y. Zhang (2024). "NOAA's National Water Model: Advancing operational 793 
hydrology through continental‐scale modeling." JAWRA Journal of the American Water Resources Association 60(2). 794 
Crosbie, R. S., J. L. McCallum, G. R. Walker and F. H. Chiew (2012). "Episodic recharge and climate change in the Murray-795 
Darling Basin, Australia." Hydrogeology Journal 2(20): 245-261. 796 
David, C. H., D. R. Maidment, G.-Y. Niu, Z.-L. Yang, F. Habets and V. Eijkhout (2011). "River Network Routing on the NHDPlus 797 
Dataset." Journal of Hydrometeorology 12(5): 913-934. 798 
de Roo, A., H. E. Beck and A. I. J. M. van Dijk (2015). "Global Maps of Streamflow Characteristics Based on Observations from 799 
Several Thousand Catchments*." Journal of Hydrometeorology 16(4): 1478-1501. 800 
Dourte, D., S. Shukla, P. Singh and D. Haman (2013). "Rainfall intensity-duration-frequency relationships for Andhra Pradesh, 801 
India: changing rainfall patterns and implications for runoff and groundwater recharge." Journal of hydrologic Engineering 18(3): 802 
324-330. 803 
Eckhardt, K. (2008). "A comparison of baseflow indices, which were calculated with seven different baseflow separation methods." 804 
Journal of Hydrology 352(1-2): 168-173. 805 
Fall, G., D. Kitzmiller, S. Pavlovic, Z. Zhang, N. Patrick, M. St. Laurent, C. Trypaluk, W. Wu and D. Miller (2023). "The Office 806 
of Water Prediction's Analysis of Record for Calibration, version 1.1: Dataset description and precipitation evaluation." JAWRA 807 
Journal of the American Water Resources Association 59(6): 1246-1272. 808 
Farmani, M. A., A. Behrangi, A. Gupta, A. Tavakoly, M. Geheran and G. Y. Niu (2024). "What Are the Key Soil Hydrological 809 
Processes to Control Soil Moisture Memory?" EGUsphere 2024: 1-28. 810 
Furey, P. R. and V. K. Gupta (2001). "A physically based filter for separating base flow from streamflow time series." Water 811 
Resources Research 37(11): 2709-2722. 812 
Genereux, D. (1998). "Quantifying uncertainty in tracer‐based hydrograph separations." Water Resources Research 34(4): 915-813 
919. 814 
Ghimire, G. R., C. Hansen, S. Gangrade, S. C. Kao, P. E. Thornton and D. Singh (2023). "Insights From Dayflow: A Historical 815 
Streamflow Reanalysis Dataset for the Conterminous United States." Water Resources Research 59(2). 816 
Gupta, H. V., H. Kling, K. K. Yilmaz and G. F. Martinez (2009). "Decomposition of the mean squared error and NSE performance 817 
criteria: Implications for improving hydrological modelling." Journal of Hydrology 377(1-2): 80-91. 818 
Gupta, S., A. Papritz, P. Lehmann, T. Hengl, S. Bonetti and D. Or (2022). "Global Mapping of Soil Water Characteristics 819 
Parameters— Fusing Curated Data with Machine Learning and Environmental Covariates." Remote Sensing 14(8). 820 
Hall, F. R. (1968). "Base‐Flow Recessions—A Review." Water Resources Research 4(5): 973-983. 821 
Hansen, C., J. S. Shiva, S. McDonald and A. Nabors (2019). "Assessing Retrospective National Water Model Streamflow with 822 
Respect to Droughts and Low Flows in the Colorado River Basin." Journal of the American Water Resources Association 55(4): 823 
964-975. 824 
Hengl, T., J. M. de Jesus, R. A. MacMillan, N. H. Batjes, G. B. Heuvelink, E. Ribeiro, A. Samuel-Rosa, B. Kempen, J. G. Leenaars, 825 
M. G. Walsh and M. R. Gonzalez (2014). "SoilGrids1km--global soil information based on automated mapping." PLoS One 9(8): 826 
e105992. 827 
Hong, Y., H. Xuan Do, J. Kessler, L. Fry, L. Read, A. Rafieei Nasab, A. D. Gronewold, L. Mason and E. J. Anderson (2022). 828 
"Evaluation of gridded precipitation datasets over international basins and large lakes." Journal of Hydrology 607. 829 
Huang, J., P. Wu and X. Zhao (2013). "Effects of rainfall intensity, underlying surface and slope gradient on soil infiltration under 830 
simulated rainfall experiments." Catena 104: 93-102. 831 
 832 



 

  Figure S1. Baseflow computed using the method suggested by Van Dijk (2010) for GRDC 6731165 station 
data to compare with Beck et al (2013). 

 

  Figure S2. Hydrohalic conductivity of a) VGM and b) ML scenarios. ML shows higher hydraulic conductivity 
over most of regions. 

 

 

  Figure S3. KGE computed for 1980–2019 for (a) ML, (b) NWM, (c) VGM, (d) CH, (e) DPM, (f) VGM0, 
(g) PTF50, and (PTFDPM0.  Negative KGE values are seen in high BFI regions (Great Basin, Upper 
Colorado, Rio Grande), while positive values are found in the California River Basin. Some Rio Grande and 
Upper Colorado stations show negative KGE for NWM but positive for ML. 

 



 

  Figure S4. BFI at 390 locations across the southwestern region. Panels show the following: (a) USGS; (b) 
IMERG; (c) ML; and (d) ML_IMERG which is combination of ML and IMERG scenarios. The BFI for all 
scenarios is computed for 2014-2019 to be consistent with forcing scenarios. Combining IMERG and ML 
could help to better capture both low and high BFI than IMERG and ML scenarios. Hence, ML_IMERG 
outperform eths ML and IMERG in simulating the baseflow. 

 

  Figure S5. BFI at 390 locations across the southwestern region. Panels display: (a) BFI boxplot for different 
scenarios and (b) BFI distribution for USGS, IMERG, ML, and ML_IMERG, which combines ML and 
IMERG scenarios. The BFI for all scenarios is computed for 2014–2019 to maintain consistency with the 
forcing data. Combining IMERG and ML helps capture both low and high BFI (median) more effectively 
than either IMERG or ML alone, with ML_IMERG outperforming both in simulating baseflow. 

 

  Figure S6. Average Noah-MP recharge over 1980-2019 for (a) VGM and (b) CH scenarios. 

 

  Figure S7. Average Noah-MP subsurface runoff over 1980-2019 for (a) VGM and (b) CH scenarios. 



 

 

  Figure S8. Average Noah-MP surface runoff over 1980-2019 for (a) VGM and (b) CH scenarios. 

 

 

Figure S9. This figure is the same as the figure 7 in paper. We put the plot here to specify the regions 
affected by the precipitation intensity. The specifies locations are to demonstrate how precipitation affect 
the BFI. Check Figure S10 to better understand relation between heavy precipitation and BFI. 

 

Figure S10. Accumulated annual extreme precipitation (>10mm/hr) (a) IMERG, (b) AORC, and (c) 
NLDAS-2. 
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