

YOUR WATER. YOUR FUTURE. 2021 Annual Water User Briefing Colorado River Update

2020-2021 Snowpack Summary

- Difference between
 - Lowest runoff year since 1964 (2002 in red)
 - 30-yr median (1981-2010 in purple)
 - 2021 (in blue)
- Soil conditions leading into the winter were very dry

Powell Unregulated Inflows 2021

- WY 2021 projected to be 2nd lowest inflow
 - 3.46 MAF WY 2021
- April July inflow was 26% of 30-year average
- WY 2021 projected to be 32% of 30-year average

Monthly Inflow (MAF)

- Late summer storms have slightly improved inflows and projections
 - Projection for July was 10% of average – Actual July was 19% of average

WY 2021 Lake Powell Unregulated Inflow (MAF)

Powell End of Month Elevations

- 24-Month Study
 August 2021
- In WY 2021, release is 8.23 MAF for min, most, and max probable scenarios
- In WY 2022, projected release is 7.48 MAF for min, most, and max probable scenarios

Mead End of Month Elevations

 24-Month Study August 2021

	2021		2022		2023		2024		2025	
Lake Powell Release > 8.23 MAF	0	0	0	0	28	16	47	33	55	37
Equalization > 8.23 MAF	0	0	0	0	3	0	9	<1	14	4
Upper Elevation > 8.23 MAF	0	0	0	0	25	16	38	33	41	33
Lake Powell Release = 8.23 MAF	100	100	0	0	0	0	1	0	8	8
Equalization = 8.23 MAF	0	0	0	0	0	0	0	0	0	0
Upper Elevation = 8.23 MAF	100	100	0	0	<1	<1	1	<1	5	<1
Mid-Elevation = 8.23 MAF	0	0	0	0	0	0	<1	<1	3	8
Lake Powell Release < 8.23 MAF	0	0	91	91	55	72	37	48	23	33
Upper Elevation < 8.23 MAF	0	0	0	0	<1	0	<1	0	0	0
Mid-Elevation = 7.48 MAF	0	0	91	91	55	72	37	48	23	33
Lake Mead Elevation Reduction Tiers	100	100	>99	>99	100	99	97	100	91	98
DCP Tier 0 (1090'-1075')	100	100	0	0	3	5	9	3	9	<1
Tier 1 Shortage (1075'-1050')	0	0	>99	>99	74	60	31	30	23	28
Tier 2 Shortage (1050'-1025')	0	0	0	0	23	34	54	65	39	32
Tier 3 Shortage (< 1025')	0	0	0	0	0	0	3	2	20	38

Probability of System Conditions - June 2021 (Observed, Stress Test)

Source: U.S. Bureau of Reclamation

Observed Record: 1906-2018

Stress Test Period: 1988-2018

ENSO Forecast

Climate Projections for 2022

- ENSO forecast favors La Nina conditions
- 90-day forecast shows above average temperatures and below average precipitation probabilities
- Runoff greater than 7.0 MAF into Powell required to avoid 3,490' in Powell (min power pool)

Summary of Arizona DCP Contributions and ICS and Conservation Activities

Arizona Lake	Mead Contribution Volumes	ICS ¹	2019 ²	2020 ³ Tier 0 (ac-ft)	2021 ⁴ Tier 0 (ac-ft)	2022 ^{4,5} Tier 1 (ac-ft)
	CAWCD EC ICS Creation	EC ICS	24,283	44,310 ⁶		
Arizona LBDCP (Tier 0: 192k ac-ft)	CAWCD Compensated Conservation	DCP ICS		3,124	57,000	125,500
	CAWCD Excess Water [°]	1	119,942 144 225	133,174 180 608	146,392 203 392	66,500
Additional CAWCD	CAWCD Compensated Conservation	EC ICS	144,223	100,000	3,500	192,000
Conservation	CAWCD Tota	1			206,892	192,000
Arizona DCP Mitigation Offset (400k ac-ft total)	GRIC - Reclamation	EC ICS	100,000			
	GRIC - AWBA	EC ICS	17,000	33,000		
	GRIC ⁹	EC ICS		50,000	40,000	73,950
	CRIT System Conservation			50,000	50,000	50,000
	Tota	I	117,000	133,000	90,000	123,950
Reclamation DCP	FMYN System Conservation			10,000	13,933	13,933
	MVIDD System Conservation			6,137	6,925	6,925
	GRIC System Conservation				40,000	
	242 Wellfield Expansion	_				11,000
	Tota		0	16,137	60,858	31,858
Additional Arizona	CRIT	EC ICS	6,274	3,736	4,685	4,685
ICS Creation	Tota		6,274	3,736	4,685	4,685
Pilot System Conservation Program (PSCP)	Bullhead City		306	349	360	360
	CRIT		26,805			
	FIVIYN T-t-		13,683	240	200	200
Total Arizona Lak	Iota		40,794	349	360	360
			308,293	333,830	362,795	352,853

Notes:

¹ ICS Volumes reflect creation volumes contributed to Lake Mead and do not reflect account balances after losses and assessments.

² 2019 reflects proactive actions prior to
DCP execution and full implementation in
2020.

³ 2020 reflects the first full year of DCP implementation of Lake Mead contributions and related actions.

⁴ Values reflect estimated volumes, subject to final accounting.

⁵ Includes pending and projected projects and subject to creation and accumulation limits.

⁶ Actual Jan. 1 Lake Mead elevation was above 1,090'; therefore this ICS will remain as EC ICS (LBOps III.E.3).

⁷ 3,500 AF was conserved per the agreement between CAWCD and MDWID; per history of use provisions in ICS Exhibit R, 3,124 AF counts as ICS creation.

⁸ Volume will vary based on available Colorado River water, on-river use forecast, and CAP operations.

⁹ GRIC to fully utilize the Arizona ICS
Accumulation Capacity in 2021, up to
45,000 ac-ft is in GRIC's ICS Creation Plan.

Arizona ICS Accumulation – Planned EOY 2021

Arizona EC ICS/BICS/DCP ICS 590,358 AF

- Arizona approaching DCP ICS Accumulation Limit of 600 KAF
- By EOY 2021, CAWCD projected to have created over 450 KAF of ICS credits
- Arizona Tribal ICS projected to be close to 230 KAF by EOY 2021

ICS and Accumulation Limits

- ICS plans through 2021:
 - Arizona will approach sharedcapacity limit
 - Nevada may exceed sharedcapacity limit
 - California is below limit
- Sharing Agreement reached between the 3 Lower Basin states to share Accumulation Limit capacity
- ICS creation activity in 2022 expected to move Arizona ICS and potentially Nevada ICS into California's Shared Space

YOUR WATER. YOUR FUTURE.

Arizona ICS Accumulation – Planned EOY 2022

- Arizona projected to maximize its DCP ICS Accumulation Limit of 600 KAF
- Tribal ICS planned in 2022 expected to fill the 300 KAF Accumulation Limit capacity identified in the Arizona ICS Framework Agreement
- With planned 2021 and 2022 ICS creation, CAWCD will likely need to:
 - Evacuate Accumulation Limit space within Arizona
 - Store ICS credits in California's Shared Space (Sharing Agreement)
- California can claim their Shared Space back; however it is still beneficial for CAWCD to be able to store ICS credits here

2022 CAP System Conservation Plans

- Supplemental guidance on rate setting regarding the collection of Fixed OM&R on System Conservation provides for stakeholder input on rate and water supply impacts
- Fort McDowell Yavapai Nation (FMYN) and Reclamation CAP System Conservation Project
 - Agreement was executed September 11, 2020 for System Conservation created in 2021 and 2022
 - Estimated 2022 conservation volume = 13,933 af
 - FMYN has leased or conserved its 13,933 af CAP entitlement in recent years, and qualifies as having a history of use

2022 CAP System Conservation Plans – cont.

- Positive water supply impact through creation of System Conservation in Lake Mead
 - Part of the US obligation to provide 100 KAF of DCP Contributions
- Increased O&M rate impact projected to be ~\$1.20/AF for CAWCD customers
- Stakeholder feedback requested by CAWCD Board
 - Please use "raise hand" feature for WebEx participants
 - Please send comments to <u>questions@cap-az.com</u>
 - Comments taken now and at the end of this briefing

YOUR WATER. YOUR FUTURE. Outlook for the 2022 CAP Delivery Supply Don Crandall – Water Control Manager

CAP Annual Operating Plan Timeline

CAP Rate Letter Schedule Request Annual Water Users Briefing

Water Delivery Requests

Final Water Schedules

Jun 30, 2021 Aug 25, 2021 Oct 1, 2021 Nov 15, 2021

CAP Delivery Supply Outlook – Normal Year

3 ANNUAL WATER USERS BRIEFING - CAP DELIVERY SUPPLY OUTLOOK | 08.25.21

CAP Delivery Supply Outlook – Mitigation

4 ANNUAL WATER USERS BRIEFING - CAP DELIVERY SUPPLY OUTLOOK | 08.25.21

KNOW YOUR WATER

Thank You

dcrandall@cap-az.com

CAP Priorities—2022 Tier 1 Shortage

- 512,000 AF* Reduction/Contribution
 - 320,000 AF per 2007 Guideline
 192,000 AF per LBDCP
- Pre-Mitigation Impacts

 100% Reduction to Ag Pool
 ~63% Reduction to NIA Pool

* P5/6 reductions accounted for separately.

Mitigation Commitments

2

2022 – Tier 1 Shortage

- Pre-Mitigation Impacts
 - 100% Reduction to Ag Pool
 - ~63% Reduction to NIA Pool

- Mitigation Commitments
 - 100% mitigation for NIA pool
 - 105,000 AF of mitigation for Ag Pool parties

EXAMPLE – Near-Term Tier 2a Shortage

- **Estimated Pre-Mitigation Impacts** •
 - 100% Reduction to Ag Pool
- DRAFT, for illustration only. Based on estimated 2023 orders ~97% Reduction to NIA Pool 2023-2025 Mitigation Commitments 1,600,000 75% mitigation for NIA pool AWBA & USBR Tribal Firming Commitments 1,400,000 1,200,000 1,000,000 Volume [AF] 800,000 600,000 Indian **M&I** 400,000 200,000 4 **P3** 0

EXAMPLE – Near-Term Tier 2b Shortage

Note: This slide was corrected to reflect 100% Mitigation of the Indian Priority supply

EXAMPLE – Near-Term Tier 3 Shortage

YOUR WATER. YOUR FUTURE.

BRIAN YOUNG

2021 Annual Water Users Meeting 2021/2022 Energy Costs

Current Market Conditions

- Recent events in the energy markets have caused forward and daily energy prices to be extremely elevated from a year earlier:
 - > 2021 & 2022 forwards up >100%
 - > 2023 and later forwards up >70%
- Retirements of large dispatchable generation facilities and increased reliance on renewable resources have reduced capacity margins in the region and made the likelihood of major market events much greater.
- Most utilities are very cautious about making forward sales and prices are much more volatile.
- Very unlikely to see a return to the very low pricing of previous years resulting from excess generation capacity and natural gas supply.

2021 CAP Energy Outlook

- We entered 2021 with approximately 70% of estimated pumping energy purchased prior to large market price increases.
- Pre-year estimate of 2021 energy costs were estimated to be right at the 2021 Energy Rate of \$56/AF.
- Since the start of this year we have been able to make extremely high-priced sales during major energy spike events and summer forward products through load shaping or shifting pumping:
 - February Texas event ~\$3M sales in one week
 - June heatwave >\$3M sales in less than one week
 - Summer forward sales >\$7M

2021 CAP Energy Costs

- The revenue from the high-priced sales have more than offset our higher energy purchases made year to date.
- Current estimate for total year energy cost are \$3/AF-\$4/AF below the pre-year projection of \$56/AF.
- While there is some risk for the remainder of the year, we expect to come in at or below the 2021 Energy Rate of \$56/AF despite the extreme increase in market prices this year.

2022 CAP Energy Outlook

- We have purchased approximately 70% of estimated pumping energy anticipated for 2022 prior to large market price increases.
- Pre-year estimate of 2022 energy costs are estimated to be about \$1/AF over the 2022 Energy Rate of \$56/AF.
- Our position and market prices for 2022 look very similar to the start of 2021.
- We anticipate that we will likely end 2022 within a few dollars of the 2022 Energy Rate regardless of market volatility.

CAP Annual Water Users Briefing – CAP Website Update

Crystal Thompson, Communications Manager August 25, 2021

CentralArizonaProject.com

Central Arizona Project - CAP (cap-az.com)

2 CAP Website Update

CentralArizonaProject.com

3 CAP Website Update

CAP Water

Reliable deliveries to central and southern Arizona. LAKE PLEASANT OPERATIONS → SHORTAGE IMPACTS →

Water Supply

Colorado River water: Adapting, protecting and building resiliency.

ADAPTING TO SHORTAGE -+

PROTECTING CAP RELIABILITY ->

4 CAP Website Update

5 CAP Website Update

7 CAP Website Update

Thank you

YOUR WATER. YOUR FUTURE.

Water Quality and Biology Update Scott Bryan, Senior Biologist Phillip Pagels, Water Transmission Supervisor

CAP Water Quality

- System Use Agreement (SUA)
 - Expand CAP Water Quality Program
 - Establish Uniform Water Quality Standards
 - Improve Stakeholder Relations
 - Improve Data Sharing
- Alamo Dam Update
- Sediment

Expanded Water Quality Program

Water Quality Guidance Document

Table A-1. List of CAP Priority Constituents and their respective Introduction and Delivery standards. Reporting Limits (or MRLs) are derived from a survey of ADHS licensed laboratories. Reporting limits that are lower than published values may be used, but higher values will not be accepted. Introduction and Delivery Standards were determined as described in Section 2.3.

Constituent	Units	Reporting Limit	Introduction Standard	Delivery Standard					
General Constituents									
Dissolved Oxygen	mg/L		Narrative						
pH	Units	2	6.5 - 9.5						
Temperature	۹F		Narra	tive					
CAP Priority Constituents									
Alkalinity (CaCO3 units)	mg/L	20	250	170					
Alpha, Gross	pCi/L	3	15	6					
Aluminum, Total	μg/L	50	50	50					
Ammonia Nitrogen	mg/L	0.5	0.5	0.5					
Antimony	μg/L	1	6	2					
Arsenic	μg/L	2.5	10	5					
Barium, Total	μg/L	2.5	2000	230					
Beryllium	μg/L	1	4	1					
Beta, Gross	pCi/L	4	50	16					
Boron	mg/L	0.2	1	0.5					
Bromide	μg/L	50	650	125					
Cadmium	μg/L	1	5	1					
Calcium, Total	mg/L	2	200	160					
Chloride	mg/L	10	450	170					
Chromium	μg/L	3	100	10					
Cobalt, Total	µg/L	2	2	2					
Copper, Dissolved	μg/L	10	64	64					
Fluoride	mg/L	0.5	4	0.7					
Hexavalent Chromium	μg/L	0.05	16	3					
Iron, Dissolved	mg/L	0.02	1	0.1					
Lead	μg/L	2.5	15	3					
Manganese, Total	μg/L	20	250	27					
Mercury	mg/L	0.2	2	0.5					

Stakeholder Relations

Rock Snot Update

CAP has detected a Cymbella (Rock Snot) bloom in the canal between our Bouse Hills Pumping Plant and Little Harquahala Pumping Plant. Although the bloom appears to be relatively minor, the floating masses are clogging strainers and filtration at some of our western pumping plants. We have not observed any rock snot growth downstream of the Little Harquahala pumping plant (~90 miles west of Lake Pleasant). CAP periodically experiences a small bloom like this in the western portion of our aqueduct, but its typically later in the year (May/June). The timing of this bloom suggests that we may see additional blooms in other parts of the canal later in the year.

Although we don't believe that the current bloom will impact stakeholders, CAP wants ensure that you have the information as soon as possible so that appropriate plans can be made. If you notice any

Data Sharing - AquaPortal

WATER OPERATIONS

CAP's Water Operations department is responsive to customer needs and works collaboratively with water users to help plan, schedule, deliver and account for their Colorado River water when and where they need it.

CAP makes reliable deliveries of Colorado

River water to Maricopa, Pima and Pinal

DELIVERIES

→ Learn More

counties.

ALAMO RELEASES

CAP monitors changes in water quality due to releases from Alamo Dam to the Bill Williams River. General information about Alamo Dam and the Bill Williams River is available on the US Army Corps of Engineers Alamo Dam webpage.

→ Learn More 🗹 US Army Corps of Engineers

RECHARGE

CAP currently operates six recharge acre-feet of surplus water underground per year

🗹 Launch Storymap

➔ Deliveries Report

→ Store Water at Recharge Facility

WATER QUALITY & BIOLOGY

➔ SUA and Water Quality Guidance

→ Water Quality

→ Biology

CAP AQUAPORTAL

LAKE PLEASANT

→ Lake Levels

→ Forecast

Lake Pleasant is CAP's storage reservoir,

providing flexibility to balance Colorado

River water supply diversions and customer

deliveries, and maintaining the CAP system and energy costs.

aquaportal

As a service to water users and stakeholder AquaPortal provides users with access to groups, CAP publishes extensive water up-to-date water quality data and quality data. CAP also manages biological operational information from the CAP issues across 336 miles of aqueduct and system and its source water. more than 40,000 acres of property.

🛃 Launch CAP AquaPortal

https://aquaportal.cap-az.com

CAP AquaPortal v2021.1.92 © 2021 Central Arizona Project

Alamo Lake Releases

8 | WATER QUALITY AND BIOLOGY UPDATE | 08.25.21

Alamo Lake Releases

9 | WATER QUALITY AND BIOLOGY UPDATE | 08.25.21

CAP Sediment Study

CAP Biology Aquatic Vegetation Algae Cymbella (Rock Snot) Quagga Mussels

11 | WATER QUALITY AND BIOLOGY UPDATE | 08.25.21

Aquatic Vegetation Control (Lake Havasu)

12 | WATER QUALITY AND BIOLOGY UPDATE | 08.26.21

Aquatic Vegetation Control (Canal)

Filamentous Algae

15 | WATER QUALITY AND BIOLOGY UPDATE | 08.25.21

Cymbella (Rock Snot)

16 | WATER QUALITY AND BIOLOGY UPDATE | 08.25.21

Cymbella – ASU Preliminary Findings

- Novel *Cymbella* species
- Prefers high phosphorus and low nitrogen conditions
- Blooms occur from late spring (Western canal) to late summer (Waddell Canal)
- Rock snot can be removed from equipment using chemical wash
- Microbial sensors can measure changes in algae composition and detect blooms

Quagga Mussels

18 | WATER QUALITY AND BIOLOGY UPDATE | 08.25.21

KNOW YOUR WATER

Thank You

sbryan@cap-az.com

YOUR WATER. YOUR FUTURE.

Engineering Capital Projects

Ryan Johnson, Engineering Services Manager Annual Water User Information Briefing August 25, 2021

2021 CIP Budget – Project Budgets

CAP Biennial Budget

CAPITAL BUDGET SUMMARY

(mousurus)		2017		2018		2019		2020		2021
		Actual		Actual	P	rojection		Budget		Budget
Evnanditurac										\sim
Salarias and related costs	•	5.044	¢	4 075	¢	3 201		4 292		2 794
Equipment, buildings, and structures	,	11,387	1	18,306	,	15,700	'	30,922	•	23,639
Other expenses										
Outside services		14,203		7,769		2,595		4,651		2,160
Materials, supplies & other expenses		556		483		392		374		287
Capitalized interest		3,330						-		-
Overhead expenses		5,156		4,116		3,237		4,465		3,943
Subtotal other expenses:		23,245		12,368		6,224		9,490		6,390
Total capital	\$	39,676	\$	34,749	\$	25,125	\$	44,695	\$	33,813
Less Reimbursement-Pima Mine Road	_	(3)						-		
									/	
Net capital	\$	39,673	\$	34,749	\$	25,125	\$	44,695	\$	33,813

2022 CAWCD Board Strategic Plan

KRA: Project Reliability

reliable and Providing cost-effective operations, maintenance, and replacement of CAP infrastructure and technology assets

2021 Capital Projects - Engineering

- Return to Work
- Abundance of Caution
- Projects from 2020
- Risk-Based Prioritization

- Phase Balancing
- Operational Impacts

- 26 Capital Projects
- \$28.3 Mil Budget
- \$25.5 Mil Estimated Spending

3 | ANNUAL WATER USERS - ENGINEERING CAPITAL PROJECTS | 08.25.2021

Prioritizing & Executing Capital Projects

- Strategies Implemented:
 - Decisions Based on Asset Criticality & Condition
 - Balance Resources and Outage Constraints Timing and Cost
 - Risk Register Communication & Collaboration Tool

Сондіттон Азвезяментя																									
Motors 🗸 🔒 🕒 D																									
PLEASE USE CTRL+CLICK TO NAVIGATE TO CORRESPONDING GIS LOCATION.							CENTRAL ARIZO	NA PROJECT																	
Plant	M01	M02	M03	M04	M05	M06	M07	M08	M09	M10															
MWP	C 🛛	A	B,	в,	в.	Α,					ID ÷	Туре 🔅	Status 🛊	RPN 🧿 P	PN Im Sc	ipact ÷	Location ÷	Description	Phase :	Planned 🔅 Budget Year	Est : I Labor I Hours (Est Non 👙 Labor Costs	Equipment ÷	Parent 🛊 WO	Work ‡ Mgmt MRC
DCU												ct Request	RPA	9	1	6 - Critical	SGL	Discharge Pipe and Manifold Reline (LT)	Planning	2023	0	\$1,500,000	SGLDISCHLT	781274	545
Вэп		A o				B		•				uest	RPA	9	5	6 - Critical	SGL	Discharge Pipe and Manifold Reline (LT)	Planning	2024	0	\$2,500,000	SGLDISCHLT		545
LHQ	A	A	B	A	A	B	A	Α.	A			ct Request	U	9	4	6 - Critical	WAD	RT - Discharge Manifold, Pipes, Tunnels, and Bypass Pipes Reline	Forecast	2024	0	\$4,556,538	MADDISCHRT		545
	•		•	•				•	•			Project Request	U	9	5	6 - Critical	WAD	LT - Discharge Manifold, Pipes, Tunnels, and Bypass Pipes Reline	Forecast	2026	3,000	\$4,556,538	MADDISCHLT		545
HSY	A	A	A	A	A	A	B	A	A	A	361	Project Request	U	9	3	6 - Critical	LHQ	LHQ Right Discharge Manifold Reline	Forecast	2026	3,500	\$1,500,000	LHQDISCHRT		545
											351	Project Request	AM	9	9	4 - Severe	Multi	EM Relay Replacement	Approved	2019	25,000	\$8,000,000	PP	659233	545
WAD	A	A	B	A	Α,	B	B	A			328	Project Request	AM	9	8	6 - Critical	WAD	PLC-5 Replacement	Approved	2021	12,500	\$5,500,000	PP		545
10.222											319	Project Request	AM	9	5	4 - Severe	MWP	MWP Cooling Water Treatment System	Approved	2020	3,500	\$1,400,000	.PP	728928	545
SGL	<u>с</u> ,	<u>с</u> ,	<mark>с</mark> ,	в	B	• •	• •	в	<u> </u>	<u>с</u> ,	113	Project Request	RPA	9	9	4 - Severe	TWP, SAN, SND & BLK	Replace TWP/SAN/SND/BLK Unit Motor Exciter Rotating Packages	Planning	2022	8,000	\$8,000,000	PP	749644	545
BRD	A	B	B	B	A	B	A	A			93	Project Request	CAN	9	5	4 - Severe	Waddell P/G	Waddell High Voltage Non Segregated Phase Bus Evaluation	Rejected/Cancelled	2022	4,000	\$3,000,000	MADHVDKW1A	745837	545
	•	•		•	•	•	•				38	Project Request	RPA	9	4	6 - Critical	Bouse Hills Pumping Plant	BSH Reline Discharge Manifold - Right	Planning	2024	1,000	\$1,000,000	BSHDISCH		545
PIC	B	в,	A	A	A	Α,					14	Project Request	RPA	9	4	6 - Critical	Mark Wilmer Pumping Plant	Reline Mark Wilmer Suction Tube Liners and Stilling Well	Planning	2023	2,000	\$3,600,000	WWPINLET	728718	545
											10040	Project Request	RPA	8	VULL	2 - Serious	Multiple	Flowmeter Replacements - Multiple Locations Along the CAP Canal	Planning	2022	0	\$400,000	AFSTO	785596	545
4 ANNUAL WATER USERS - ENGINEERING CAPITAL PROJECTS 08 25 2021							369	Project Request	U	8	6	6 - Critical	WAD	Unit Breaker Replacement (U2, U3, U6, U7))	Forecast	2028	4,500	\$4,400,000	PP		545				
																						646			

Ongoing Construction Market Conditions

- Some Challenges we are Facing:
 - Contractor Availability
 - Difficulty with Coordinating Schedules
 - Scarcity in Labor and Materials
 - Increases in Pricing

Capital Spending

Balance and Prioritize spending through the Project Steering Committee

2020 & 2021 CIP Under Spending

6 | ANNUAL WATER USERS - ENGINEERING CAPITAL PROJECTS | 08.25.2021

2022-2023 Capital Budget - Engineering

2022-2023 Budget – Multi Phase Projects

Discharge Valve Replacement Program 2022 Budget: \$1.0 Million 2023 Budget: \$0.8 Million

Fire Protection Upgrades

2022 Budget: \$4.3 Million (MWP), \$1.0 Million (South Plants) 2023 Budget: \$2.7 Million (MWP), \$4.5 Million (South Plants)

2022-2023 Budget – Multi Phase Projects

Backup Power System Replacements

2022 Budget: \$2.6 Million 2023 Budget: \$1.6 Million

HVAC Replacement Program

2022 Budget: \$1.7 Million (MWP), \$0.6 Million (HDQ) 2023 Budget: \$4.9 Million (HDQ)

2022-2023 Budget – Multi Phase Projects

Electromechanical Relay Replacements 2022 Budget: \$2.6 Million 2023 Budget: \$1.6 Million **Pipeline Repair Program** 2022 Budget: \$4.2 Million 2023 Budget: \$2.6 Million

2022-2023 Budget – New Capital Projects

Sump Pump Level Controls 2022 Budget: \$1.1 Million 2023 Budget: \$0.2 Million

Potable Water Skids Replacement 2022 Budget: \$0.8 Million

2022 Budget: \$0.8 Million 2023 Budget: \$1.1 Million

2022-2023 Budget – New Capital Projects

A-Plants DVOS Compressor Replacement 2022 Budget: \$1.4 Million Replace Valves at HQ for Fire Protection 2023 Budget: \$700K

KNOW YOUR WATER

Thank You Ryan Johnson rjohnson@cap-az.com

Maintenance Update

Robert Hitchcock *Maintenance Control Manager*

Annual Water User Meeting

August 25th, 2021

How Failures Actually Occur

Generally, less than 20% of failure modes of components are wear or age related. Time or usage based strategies can actually decrease reliability and introduce new issues.

This is why CAP has chosen to follow a condition driven Maintenance, Refurbishment, and Replacement strategy.

88	The six conditional failure probability patterns		UAL 1978	Broberg 1973	MSDP Studies 1983	SSMD 1993
Wearout		Α.	4%	3%	3%	6%
Related /)		В.	2%	1%	17%	0%
Age		C	5%	4%	3%	0%
<u></u>	Evidence of wearout		11%	8%	23%	6%
vearout		D.	7%	11%	6%	0%
dom / No		Е.	14%	15%	42%	60%
Ranc		F.	68%	66%	29%	33%
	No evidence of wear	out –	89%	92%	77%	93%

- Pattern A; High incidence of failure at the beginning followed by a constant or increasing conditional probability of failure then a wear-out (*Bathtub* curve)
- Pattern B; Classic wear-out, shows constant or increasing conditional probability of failure then a wear-out.
- Pattern C; Gradual aging wear out age is not identifiable
- Pattern D; Best new, low conditional probability of failure
- Pattern E; Totally random, constant conditional probability of failure at all ages
- Pattern F; High rate of failure probability at the beginning but decreasing and getting constant after coming into service

Motor Con BRWU02MTR

	GST	Power Fac	GST Tip-U		
Alarm Score	13.8 kv	6.9 kv	4.16 kv	13.8 kv	6.9 kv
New-0	< 1.0	< 1.0	< 1.0	< 0.5	< 0.5

S MAINTelligence - DMSI_CAP_PROD

BRD	A	В	Rule Set			
PIC	R	R	Partial Discha	rge Qm		
FIC	•		Rule : AH-MTR-S Om. which is a m	TATOR-OV2-F		
RED	в.	A	indicator of the size and vol of Qm readings from similar GST Power Factor Tip			
TWP	Α.	В	Rule : AH-MTR-S Power factor is a power factor of th normal line-to-gro Single Phase	TATOR-OV2-1 measurement e insulation to und voltage is Capacitance		
SAN	B	В	Rule : AH-MTR-STATOR-O Stator Capacitance is an of and dielectric constant of th			
BRW		C	GST Power Fa	actor		
SXV	C.	Ċ	Rule : AH-MTR-STATOR-OV Power factor is the cosine of with the Doble Testing Equipi condition the power factor wil Insulation Thermal Adir			
SND	C.	D	Rule : AH-MTR-S This rule integrate operating tempera means that it sho Class F insulation	TATOR-OV2-1 es the stator ru ature of 10 deg uld be able to v as being rate		
BLK	B	R	This calculation is Total Number	done in the al		
DEIX			Rule : AH-MTR-S Total number of s	TATOR-OV2-S tarts for this m		
				Symptom		
			Stator Insulati	onThermal		
<			Starts			
			GST Power Fa	actor		
			GST Power Fa	actor		
	1		GST Power Fa	actor		

CAP Motor Condition Assessment

agnosis				Status	Parameter	
C				VIOR S		
ration.	Overhaul Date	I				
frequency.	Serial Number	8-276157-0	100			
nonitoring.	RPM	720	1			en
g.	Voltage	6600				5
monitoring	HP	1750				-
	Make	MAGNETEK				
	Model	TBZBEUW				

c n	Partial Discharge Q _m (mV)			Thermal Aging				
	13.8 kv	6.9 kv	Run Hours	Stator Temp				
	< 265	< 177	< 40K	< 90	90-100	101-105		

Α

Α

.

0.000

1.000

0.000

0.000

3

wo.

Normal

A

Diagnosis Status						
		Justification		Score		
Rule Set	AH-MTR-STATOR-OV2	6 Terminal 6.9 kV and 13.8 kV Motor				
Partial Dischar	ge Qm		Critical	42		
Rule : AH-MTR-ST Qm, which is a me ndicator of the siz of Qm readings fro GST Power Fa	FATOR-OV2-PD Stator Partial Dis asure of the overall peak Partial Dis e and volume of voids in the stator i m similar air cooled synchronous m actor Tip-Up	scharge Rule scharge (PD) magnitude in millivolts generated at 10 insulation. Alert levels have been set based on IRIS i lachines with directional capacitive couplers (TGA).	pulses per sec industry standa Caution	cond is a good Ird comparison 17		
Rule : AH-MTR-ST Power factor is a r power factor of the normal line-to-grou Single Phase (TATOR-OV2-TIPUPG Stator GST measurement of insulation losses. W e insulation to increase with test volt und voltage is defined as the power Capacitance Change	Power Factor Tip-Up Rule /hen insulation voids are present this leads to partial age. The difference between the power factor at 100 factor tip-up. Grounded Specimen Test measures th	discharge and percent and 2 e phase-to-gro Critical	causes the 5 percent of und insulation. 9		
Rule : AH-MTR-ST Stator Capacitance and dielectric cons	TATOR-OV2-CAP Stator Doble B e is an offline test measured with the stant of the insulation. Changes in the	aseline Capacitance Rule e Doble testing tool. Capacitance is dependent prima e capacitance over the baseline for the motor can be	arily on the mot e indicative of p	or geometry physical		
GST Power Fa	actor		Normal	3		
Rule : AH-MTR-S1 Power factor is the with the Doble Tes	FATOR-OV2-PFG Stator GST Po e cosine of the angle between the ap sting Equipment. GST means the pe or factor will be near 1 percent	wer Factor Rule oplied AC test voltage and the current through the ins r phase winding ground insulation is tested. For mos	sulation. This te st stator insulati	est is conducter ion in good		

Rule : AH-MTR-STATOR-OV2-TEMP Stator Thermal Aging Rule

This rule integrates the stator running hours at given stator temperatures. Thermal aging is based on the theory that an increase in operating temperature of 10 deg C will halve the life of the insulation. Class F insulation has a temperature rating of 155 deg C. This neans that it should be able to withstand its rated voltage at that temperature for 20,000 hours. Industry standard practice is to treat Class F insulation as being rated Class B (130 deg C). Working backward from that provides a way to calculate a thermal aging score. This calculation is done in the alarm set. Normal Total Number of Starts 1

Rule : AH-MTR-STATOR-OV2-STARTS Motor Total Starts Rule

Total number of starts for this motor.

A (<18) - Like new, nearly ideal. Continue norma 3 (18-50) - Some wear, stable, Continue norma C (51-83) - Worn, assess restoration & monitorin (>83) - Approaching end of life, budget for rest

Asset Condition Grade

		Condition	Score	75
Symptom	Parameter	Value	Limit	Status
ator InsulationThermal Aging	Thermal Aging	2.00	2.00	Normal
arts	Starts	4236.00	1.00	Normal
ST Power Factor	GST Power Factor A	1.18	1.00	Normal
ST Power Factor	GST Power Factor B	1.09	1.00	Normal
ST Power Factor	GST Power Factor C	1.23	1.00	Normal
Phase Capacitance Change	Capacitance Phase A	43730.60	5.00	Critical
Phase Capacitance Change	Capacitance Phase B	43423.80	5.00	Critical

YOUR WATER. YOUR FUTURE.

В

1.:

0.0

0.(~ >

0.000 1.250

0.000

0.000

Asset Health Statistics

Note: All asset scores have individual multipliers so that they are normalized to the same scoring scale

A (<=16) - Exceptional - Like new. Continue normal monitoring.

B (17-49) - Good - Some wear, stable. Cont. normal monitoring

C (50-82) - Fair - Worn, assess restoration & monitoring freq.

D (>=83) - Poor - Approaching end of life, budget for restoration.

Asset Health Statistics	Total Count	Α	В	С	D	N/A
Pumps	109	37	71	1	0	0
Motors	109	58	31	19	3	0
Discharge Valves	109	72	36	1	0	0
Transformers	42	30	12	0	0	0
Radial Gates	91	24	65	2	0	0
Turnouts	51	24	22	0	0	5
Total	511	47.9%	46.4%	4.5%	0.6%	1.0%

2021 Annual Maintenance Outages

WEST OUTAGE

June 14th – Aug. 26th

6

Mark Wilmer Pumping Plant (MWP)

Bouse Hills Pumping Plant (BSH)

Little Harquahala Pumping Plant (LHQ)

Hassayampa Pumping Plant (HSY)

Unit Availability for Additional Outages by Plant Data Includes Planned MCOI Outage and Deliveries, 6/1/2021 Compiled by Water Control Unit Availability Dec-21 Mar-21 Apr-21 Jun-21 Jul-21 Aug-21 Sep-21 Oct-21 Nov-21 MWF BSF G/MD/SM LG/MD/SM LG/MD/SM LG/MD/SM Summer Outage LHG MD/SM LG/MD/SM LG/MD/SM LG/MD/SM MD/ HSY LG/MD/SM MD/SM MD/SM LG/MD/SM WAD-P/G 0 0 0 3 3 6 6 WAD-F 3 3 0 LG/MD/SM LG/MD/SM LG/MD/SM LG/MD/SM SGI BRD PIC RED LG/SM TWP SM 0.0 0.0 0.0 SAN SM SM LG/SM LG/SM LG/SM Fall Outage LG/SM LG/SM LG/SM BRW LG/SM LG/SM SXV LG/SM LG/SM LG/SM LG/SM LG/SM G/MD/SM LG/MD/SM SND G/MD/SM LG/MD/SM LG/MD/SM BMT SM LG/MD/SM LG/MD/SM LG/MD/SM LG/MD/SM

WADDELL OUTAGE

Sept. 7th – Oct. 5th

Waddell Pumping / Generating Plant (WAD)

SOUTH OUTAGE

Oct. 17th – Nov. TBD

Salt Gila Pumping Sandario Pumping Plant (SGL) Plant (SAN) Brady Pumping Plant Brawley Pumping Plant (BRD) (BRW) Picacho Pumping Plant San Xavier Pumping (PIC) Plant (SXV) Red Rock Plant (RED) Snyder Hills Pumping Plant (SNH) **Twin Peaks Pumping** Plant (TWP) Black Mountain Pumping Plant (BLK)

Annual Water Users Meeting

West Outage 2021 – Major Activities

MWP Unit 1 & 2 Pump Cavitation Repair MWP Unit 1 Discharge Valve Repair LHQ & HSY Discharge Valve Replacement LHQ Right Discharge Manifold Inspection MWP Unit 2 - 6 year PMs BSH Unit 8 – 5 year PMs LHQ Unit 4 & 5 – 5 year PMs

BSH Exciter Replacement project

YOUR WATER. YOUR FUTURE.

7

South Outage 2021 – Major Activities

Pool 37 Lining Repair

BRD & RED Non-segregated Bus replacement

BRD Switchyard aggregate replacement

SAN Unit 5, BRW Units 3 & 4 Discharge Valve replacement

BRW & BLK Discharge pipe and manifold (right) – 5YR PM

RED UZ1A/UZ2A Station Switchgear 5YRPMs

SAN UZ1A Station Switchgear 5YRPMs

YOUR WATER. YOUR FUTURE.

8

2021 Completed/In-Progress Overhauls

SGL UNIT 1 - COMPLETE

Reconditioning of Unit 1 Motor, Retesting of Motor, and Pump Overhaul.

MWP UNIT 5 - COMPLETE

Replacing all rotor 14 pole pieces refurbished by ABB. Redesign & replacement of v-block between poles.

LHQ UNIT 4 – IN PROGRESS

Unit 4 Motor Cleaning, field touch-up of insulation on rotor & stator, Re-testing motor, and Pump Overhaul.

Annual Water Users Meeting

9

2022 – Major Maintenance Activities

Salt River Siphon Coatings Inspection MWP U03 Rotor Pole Replacement LHQ U07 Overhaul SAN Unit 5, BRW Units 3 & 4 Discharge Valve replacement SGL U04 Overhaul Gila River Siphon Inspection Check 37 radial gate refurbishment Check 11 radial gate refurbishment SXV U02 Overhaul BLK Discharge Manifold & line inspection Santa Cruz Siphon Inspection

Civil Engineers inspecting 252"I.D. Steel Lined Salt River Siphon

2022 Major Work – Snapshot

LHQ UNIT 7 OVERHAUL

Overhaul of Motor Cleaning and Re-testing & Pump Overhaul. Total estimated resources of 7,400 labor-hours (3.7 labor years). 6 month duration. 4 month outage with 2 months of machine shop & coatings booth work prior.

11

CHECK 11 RADIAL GATE REFURBISHMENT

Remove and refurbish both radial gates. Total estimated resource load of 1,800 labor-hours (0.9 labor-years). 5 month duration. 6 week outage (3 weeks per gate) with 3.5 months of machine shop & coatings booth work prior.

SANTA CRUZ SIPHON INSPECTION

Dewater and visual inspection of the 8,500LF, 152" I.D. CIP Santa Cruz Siphon. Total estimated resource load of 1,000 labor-hours (0.5 labor-years).

Thank You - Questions?

YOUR WATER. YOUR FUTURE.

Annual Water Users Meeting

Pool 34 Protective Dike Failure Event Map (July 25, 2021)

Check 34

Location where canal water spilled over our canal structure and eroded some of the embankment on canal right.

lellar

Approximate area where retention dike failed, storm water poured into the CAP canal.

Retention Dike

Two 72" Diam. Overchute Pipes

Picacho Pumping Plant

Newman Peak

Picacho Peak **Retention Dike**

McClellan Wash

Interstate 10

Illustration of Large Water Shed area

Red Rock Pumping Plant

Canal Hydrology